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Abstract 
This study aims at evaluating shrinkage cracking risk in reinforced concrete structures, which has not been established in 
the past studies. To achieve this goal, analytical scheme capable of calculating the probability of shrinkage cracking was 
proposed. In this scheme, the variation of shrinkage restrained stress, that of concrete cracking strength, and safety factor 
are to be determined. The first two were determined with simple analytical simulation of structural elements, and the last 
factor was based on the comparison between cracking record of actual RC member and analysis results. Finally, this 
scheme was applied to actual construction project, and its validity was confirmed during the construction process.  
 

 
1. Introduction 

With an increase in building stock, technology of control-
ling shrinkage cracking, which greatly affects the durabil-
ity of reinforced concrete (R/C) buildings, has significant 
potential for making a social contribution. However, de-
spite the fact that it has been a major subject of research 
over the years, the efforts to establish a shrinkage crack 
control technology have been confined to empirical in-
quiries, and any systematic solution has yet to be proposed 
(AIJ 2002). 

Although many studies on elemental technologies of 
elucidating or controlling the shrinkage cracking resulted 
in a very rich accumulation of findings (AIJ 2003a), no 
research has ever integrated the elemental technologies to 
a design of controlling the shrinkage cracking. Regarding 
the prediction of crack initiation that forms an important 
part of the control technology, very few research have been 
successful in predicting cracking taking into account 
driving and resisting factors and their impacts in a quan-
titative manner. As an example of relevant past studies, Li 
et al. (2006) proposed a procedure to assess cracking risks 
in bridge deck elements. They quantitatively evaluated 
cracking risks in the elements by employing finite element 
numerical simulation and showed effects of concrete mix 
selection such as involvement of shrinkage reducing 
agents. However, their results are restricted in simulating 
cracking tendency in the elements and not compared with 
actual structures’ behavior. Furthermore, van Breugel and 
Lockhorst (2001) suggested clear calculation procedure to 
estimate early age cracking risk adopting stochastic ap-

proach. However, their results are limited only for early 
age hardening concrete tested in laboratory and involve no 
comparison with field data in actual structures. Hence 
results in available literature appear insufficient to con-
struct comprehensive design scheme capable of control-
ling shrinkage cracking in a practical manner. 

On this basis, the present study proposes a shrinkage 
crack control technique capable of assessing the risk of 
shrinkage cracking and verifies the accuracy of the pro-
posed technique focusing on planar elements restrained by 
beams. First, adopting the probability of shrinkage crack-
ing Pf as an index of shrinkage cracking risk, a basic model 
is presented to calculate Pf based on the stress-strength 
ratio η, which is defined by the ratio of shrinkage restraint 
stress σst to cracking strength σcr. Next, estimation equa-
tions are derived in terms of explicit functions for σst and 
σcr for planar elements. To calculate Pf based on the basic 
model, three values are needed, the dispersion of σst and 
σcr and the safety factor. They are determined through 
analysis, as well as based on the crack data of each element. 
Finally, the proposed technique is applied to cracking 
control in an actual construction project to verify its ef-
fectiveness and accuracy.  

 
2. Basic model for cracking probability 
calculation 

The S-R (Stress-Resistance) model, commonly applied to 
structural safety evaluation (e.g., Ang and Tang 1984, 
Tokumaru et al. 1987), is adopted in this study. It is also 
used to obtain the probability of cracking induced by 
autogenous shrinkage and cement hydration heat (JSCE 
2002a, van Breugel and Lockhorst 2001). When applying 
the S-R model to the problem of shrinkage cracking, it is 
assumed that cracking occurs when the crack-driving force 
S, i.e. the shrinkage restraint stress, exceeds the critical 
level of resistance force R, i.e. the shrinkage cracking 
strength, (R ≤ S). The cracking probability is calculated on 
the assumption that S and R are random variables that 
follow a certain probability distribution. Thus, the crack-
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ing probability Pf is given by (Nakamura et al. 1999): 

Pf = Prob(Z=R-S≦0) (1) 

Assuming R and S are independent from each other and 
follow normal distributions, the calculation of Pf is sig-
nificantly simplified, as in (Imamoto et al. 2004): 

( ) [ ] [ ]2 221P COV R COV Sf ξ ξ
⎡ ⎤

=Φ − + ⋅⎢ ⎥
⎣ ⎦

 (2) 

where, Φ: standard normal probability distribution func-
tion; COV[S] and COV[R]: coefficient of variation for S 
and R, respectively; ξ η γ= ⋅ ; η: stress-strength ra-
tio ( )( )st cr S Rσ σ μ μ γ= = ; μS and μR: expected values of S 
and R, respectively; γ: safety factor; σst: estimate of 
shrinkage restraint stress (N/mm2); σcr: estimate of 
shrinkage cracking strength (N/mm2). Denotation γ here 
represents a correction factor to compensate for an error 
produced when estimating S and R by means of σst and σcr, 
respectively.  

Using Equation (2) and determining the three set values, 
i.e., COV[S], COV[R] and γ will derive a unique solution 
of Pf as a function of η (hereinafter called the “shrinkage 
crack risk curve”). Denotation η is expressed as the ratio of 
σst to σcr, and if these two values are estimated based on 
the properties of R/C elements, it becomes possible to 
evaluate the cracking risk of the elements. This evaluation 
provides us with necessary engineering solutions to con-
trol shrinkage cracking in design of R/C elements. In the 
following chapters, a technique calculating σst and σcr and 
determining COV[R], COV[S] and γ will be discussed. 

 
3. Method of calculating shrinkage restraint 
stress and cracking strength 

3.1 Principle of establishing equations for 
shrinkage restraint stress and cracking strength 
With walls and floor slabs, this study examines σst induced 
in planar elements restrained by beams at a low drying 
shrinkage rate, as well as σcr when cracks occur in the 
elements. In literature, sophisticated numerical analysis 
methods can reproduce σst induced in planer elements and 
their accuracy has also been examined already (e.g., 
Bolander and Berton 2004, Kwak and Ha 2006). However, 
they usually require complicated calculation procedure 
and thus are not completely suitable for application to the 
general-purpose design of actual structures. With regard to 
the latter, i.e., cracking strength, the results vary by lit-
eratures, and no definite findings have been obtained (JCI 
2001).  

Hence, this study aims at establishing a control design 
technique based on the stochastic theory and derives 
equations that have the following characteristics:  
• The equations should be as simple as possible to be put 

into practice of R/C design and construction. 
• Considering that they are utilized to estimate COV[S] 

and COV[R], σst and σcr should be expressed as explicit 
functions.  

 

3.2 Shrinkage restraint stress equations using 
the effective Young’s modulus 
The effective Young’s modulus method (Iwaki et al. 1980) 
has the characteristics described above and is adopted to 
drive estimation equations for the shrinkage restraint stress 
of planar elements externally restrained by beams. The 
basic stress-strain equations using the effective Young’s 
modulus method are given by (Iwaki et al. 1980, Imamoto 
2003). 

( ) ( , ) ( )1/ 21/ 2
1

i
t E t t te i ji e j

j
σ ε∑= Δ++

=
 (3) 

{ }
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where, 
σ(ti+1/2): stress in concrete at Step ti+1/2 (N/mm2), 
Ee(ti+1/2, tj): effective Young’s modulus (N/mm2), 
φ(ti+1/2, tj): creep coefficient at Step ti+1/2 when loaded at 
Step tj, 
(Ratio of creep strain to elastic strain assuming Young’s 
modulus at 28-day age), 
Δε(tj): increment of response strain at Step tj, 
Δεf(tj): increment of free strain at Step tj, 
Δεe(tj): increment of restraint strain at Step tj, 
Ec(tj): Young’s modulus at Step tj (N/mm2), 
E28: Young’s modulus under standard curing at 28-day age 
(N/mm2). 

Assuming that the planar element confined by beams is 
represented by a uniaxial model as shown in Fig. 1, the 
following equations are derived according to the equilib-
rium condition of forces between elements:  
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where, A: cross sectional area of the element; ε(ti+1/2, tj), 
εe(ti+1/2, tj) and εf(ti+1/2, tj): response strain, restraint strain 
and free strain, respectively, at Step ti+1/2. The superscripts 
‘ and “ represent Beams 1 and 2 in Fig. 1, respectively. 
Assuming that the two beams have an equal restraining 
effect and that the Bernoulli-Euler hypothesis is found 
true for the strains in the entire sectional areas of the all 
three elements, the following two equations are derived:  

{ }
{ }

( , ) ( ) ( ) ( )1/ 2 1/ 2 1/ 21/ 2

( , ) ( ) ( ) ( )1/ 2 1/ 2 1/ 21/ 2
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According to Equations (3) through (8), the equation for 
calculating the shrinkage restraint stress σst of a planar 
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element can be given with explicit functions as follows.  

{ }

{ }
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where the section stiffness of planar element and two 
beams, S, S' and S'', are given by 

( , ) ( , )1/ 2 1/ 2S t t E t t Aj j e j j=+ + , and 

( , ) ( , )1/ 2 1/ 2S t t E t t Aj j e j j′ ′ ′=+ + ，

( , ) ( , )1/ 2 1/ 2S t t E t t Aj j e j j′′ ′′ ′′=+ + . 

The proposed Equation (9) gives shrinkage restraint 
stress in terms of explicit functions while the stress cal-
culation with the effective Young’s modulus method on 
which Equation (9) is based has been confirmed, by 
Imamoto (2003), to be satisfactorily accurate in the 

analysis of wall elements. Equation (9) is thus expected to 
have an accuracy level more or less adequate for applica-
tion to the shrinkage crack control design of actual build-
ing elements (Imamoto 2008, Imamoto et al. 2004). 

 
3.3 Cracking strength equations 
Following the proposal of AIJ (2003a), σcr is given by the 
following equation with the reduction coefficient λ, a 
critical stress-strength ratio, and splitting tensile strength 
ft:  

fcr tσ λ= ×   (10) 

A major characteristic of Equations (9) and (10) is that 
they are expressed in terms of explicit functions, allowing 
an easy calculation of the dispersion of σcr and σst based on 
the dispersion of variables constituting those functions.  

 
4. Estimation of dispersion 

4.1 Estimation equations for dispersion  
COV[S] and COV[R] must be known when obtain Pf, using 
Equation (2), while statistical data regarding actual struc-
tures are very few. Hence in this study, COV[σst] and 
COV[σcr] are calculated based on the dispersion of vari-
ables constituting Equations (9) and (10), and the coeffi-
cients of variation of S and R are then estimated.  

When Y is given by Y=g(X1,X2,X3,…Xn) as a function of 
several random variables and they are independent from 
each other, the first term of Taylor series may be taken and 
the expected value and variance of Y, i.e., E[Y] and Var[Y], 
are approximated by the following equations (e.g., Ang 
and Tang 1975), where μ is the expected value of each 
random variable.  

[ ] , ,....
1 2

E Y g X X Xn
μ μ μ⎛ ⎞

≈ ⎜ ⎟
⎝ ⎠

   (11) 

[ ] [ ]2
1

n
Var Y C Var Xiii

∑≈
=

 (12) 

where Ci is the value of partial derivative /g Xi∂ ∂  at μX1，
μX2, …, μXn. When the expected value and coefficient of 
variation of each random variable are known, the expected 
value and variance of σst are calculated by applying the 
Equations (11) and (12) to the Equation (9). In so doing, if 
X1=φ, C1 in Equation (12) is given by the following equa-
tion. Note that A’=A”, Ee(tj+1/2, tj) = E’e(tj+1/2, tj) = E”e(tj+1/2, 
tj) is assumed for simplicity, and   
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×⎢ ⎥′+⎢ ⎥

⎢ ⎥
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⎢ ⎥
⎡ ⎤ ⎡ ⎤⎢ ⎥+ ×+⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

(13) 

Likewise, according to Equation (10), σcr is given by 

 
 

 
Fig. 1 Uniaxial model of planar elements restrained by 
beams. 
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[ ][ ]E E f Etcrσ λ⎡ ⎤= ×⎣ ⎦        (14) 

( )22 2[ ] [ ] [ ] [ ] [ ]Var E f E E f Etcr tσ λ λ= × − ×  (15) 

 
4.2 Method of estimating the dispersion of 
shrinkage restraint stress 
In order to estimate the variance of σst by Equation (12), 
the expected value and variance of each random variable 
constituting Equation (9) are needed. To this end, common 
R/C floor slab elements as schematically shown in Fig. 1 
(b) are considered and the expected values of the proper-
ties of elements are assumed as shown in Table 1. The 
floor slab elements are on a 9-m grid and 300 mm thick, 
restrained by two footing beams (sectional dimensions: 
1500 x 700mm) which are under the ground and assumed 
free from drying shrinkage. Among the expected values of 
variables in Equation (9), Ec, φ and εf require the estima-
tion of their changes with time from the values shown in 
Table 1, for which, the existing literatures are adopted and 
the details are provided in Appendix. Note that εf is given 
as the drying shrinkage strain in this estimation analysis. 

Although there are not enough data available on the 
dispersion of each random variable, those shown in Table 
2 are estimated on the basis of references. Explained below 
are the calculation of dispersion, focusing on Ec as an 
example. 

2Kδ ν α=  (16) 

where, δ: standard deviation; ν: maximum deviation; Kα: 
normal equivalent deviate in accordance with the fraction 
defective α. Since Kakizaki et al. (1977) reported that the 
difference between the maximum and minimum measured 
values of Ec for concretes in the same structural elements 
was approximately 5000 N/mm2, this value is assumed as 
the maximum deviation here. Assuming that Ec follows the 
normal distribution and the maximum deviation νEc = 5000 
N/mm2 is equivalent to ±Kα•δ of the expected value, δ Ec 
can be obtained from Equation (16), where Kα =1.73 is 
assumed corresponding to the fraction defective α = 4%. 
On the same assumption, among the variables constituting 
Equation (9), the standard deviations of φ as well as A and 
A’ are calculated on the basis of Sato et al. (2006) and AIJ 
(2003b), respectively, and divided by the mean value of 
each. COV magnitude for εf is determined by referring 
drying shrinkage test data adopting actual Japanese 
ready-mixed concrete (Momose et al. 2007). Summary of 
these random variables are shown in Table 2.  
 
4.3 Method of estimating the dispersion of 
shrinkage cracking strength 
Calculation of the dispersion of σcr requires the expected 
values and variance of the two variables constituting 
Equation (10), which are assumed using the existing lit-
eratures. The expected value of ft, which is one of the 
variables, is estimated based on the nominal concrete 
strength given by Table 1 as shown in appendix 5 in detail. 

The standard deviation of ft is estimated by Equation (16), 
assuming the maximum deviation to be 1.02 N/mm2 as 
suggested by Ueda et al. (1994). The expected value of λ is 
set at 0.7 (Makizumi and Ohta 1987), and the maximum 
deviation at 0.4 (AIJ 2003a). 

The dispersions of σst and σcr calculated with the pro-
posed methods are not based on direct measured data, and 
hence, are open to question how accurate the actual con-
ditions are represented. Considering the fact that the dis-
persion values have been adopted in an arbitrary manner 
(Nakamura et al. 1999), the proposed technique must be of 
significance to a certain extent in an engineering aspect. 

 
4.4 Results of dispersion estimation  
Based on the values shown in Table 1, analysis is per-
formed on σst and σcr using Equations (9) and (10), re-
spectively. Equation (9) is incremental with respect to 
material age; the time step is set at one day, and analysis is 
performed up to a material age of 500th days. Adopted time 
histories of εf,  σcr and φ are shown in Fig. 2 (a) and (b). 
The results of analysis on the expected values of σst and σcr 
are found 1.57 and 1.88 N/mm2 at 500th day age, respec-
tively.  

Next, the results of calculating the coefficient of varia-
tion are shown in Fig. 3. The values in this figure are ob-
tained by dividing the square root of 2C Var Xii ⎡ ⎤⎣ ⎦  in Equa-

Table 1 Analytical conditions (Expected values). 
Input value Unit Value 

Dimension of floor slab mm 9000 x 9000
Thickness of floor slab mm 300
Section of footing beam mm 1500 x 700
Nominal concrete strength N/mm2 27
Specified concrete strength N/mm2 24
Ambient relative humidity % 60
Ambient temperature °C 20
Unit water content  kg/m3 175
Unit mass of concrete kN/m3 23
Critical stress-strength ratio - 0.70

 

Table 2 Summary of dispersion of random variables. 
 Variables COV Reference COV 

(analysis)
Young’s 

modulus Ec

0.0637 Kakizaki et 
al. 1977 

Creep  
coefficient φ

0.173 Sato et al. 
2006 

Free shrinkage
strain εf 

0.0700 Momose et 
al. 2007 

Beam section 
A’ 

0.0240 AIJ 2003b 

Shrinkage 
restraint 

stress 

Floor section A 0.0240 AIJ 2003b 

0.130 

Splitting 
strength ft 

0.112 Ueda et al. 
1994 

Shrinkage 
cracking 
strength Reduction 

coefficient λ
0.166 AIJ 2003a 0.199 
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tion (12) by the expected value of σst. Fig. 3 shows the 
comparison of each variable’s contribution on the disper-
sion of σst where εf is most influential of all random vari-
ables. It is also found that the sum of all the impacts of 
random variables in Equation (12) gives a coefficient of 
variation of 0.130 as shown in Table 2. From these results, 
the value of COV[S] applicable to Equation (2) can be set 
at 0.15 to be slightly conservative.  

For σcr, Equation (15) was performed using the disper-
sion of random variables given in Table 2. As a result, the 
coefficient of variation of σcr was calculated to be 0.199, 
and the value of COV[R] applicable to Equation (2) was set 
at 0.2.  

 
5. Calibration by comparison against the 
cracking of actual structures 

5.1 Strategy for determining the safety factor  
Among the three set values needed for calculating the 
cracking probability using Equation (2), this section ex-
plains the determination of safety factor γ. It is reasonable 
to assume that γ takes into account an error created in the 
process of analytical estimation of S and R with Equations 
(9) and (10), respectively. Cracking induced by the heat of 
hydration can be a good example where the safety factor 
that corresponds to γ here has been set at 1.26 (JSCE 1999), 
obtained by comparing the results of cracking survey of 
actual structures (JSCE 1996) against the results of 
analysis. Likewise in this study, a value of γ is determined 
by conducting a survey of cracking in actual structural 
elements and comparing the results against analytical 
values obtained by Equations (9) and (10).  
 
5.2 Analytical cases and quantification of crack-
ing conditions 
As shown in Fig. 4, four analytical cases are selected: two 
cases of wall elements restrained by upper and lower 
beams (hereinafter called “W-1” and “W-2”, respectively), 
and two cases of floor elements restrained by steel beams 
in actual structural frames (“S-1” and “S-2”). The former 
two are the model structural frames in experiments, whose 
cracking data can be given by an existing literature 
(Imamoto 2003). .The latter two have been sampled from 
continuously-spanned floor slab elements of actual struc-
tures. One grid is selected for modeling and subjected to 
shrinkage restraint stress analysis in the longitudinal di-
rection. These elements are subjected to a survey on the 
width and length of the cracks developed for at least one 
incremental material age, allowing a comparison against 
the analytical results.  

The cracking survey of S-1 was performed with a 
4-story steel-structured office building, and the entire R/C 
slab floors with steel deck plates on the 2nd, 3rd and 4th 
floors were surveyed. The number of spans was 7 and 3 in 
the longitudinal and transverse directions, respectively. 
The survey S-2 was performed with a 4-story distribution 
facility constructed with a combined structural system 
having R/C columns and steel beams. The survey was 

performed for the 4th floor which was constructed with 
steel deck plates. The number of spans was 10 and 5 in the 
longitudinal and transverse directions, respectively, but 6 x 
5 continuous spans were selectively surveyed. The crack 
width is represented by the maximum width of a single 
crack.  

For the purpose of quantifying the cracking condition of 
each element here, a value obtained by dividing the 
product of crack width and crack length by floor area is 
defined as the crack density used for comparison against 

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

C
re

ep
 c

oe
ffi

ci
en

t φ

Age (days)
 

(b) Creep coefficient 

  

0

100

200

300

400

500

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Fr
ee

 s
tra

in
 (μ

)

C
ra

ck
in

g 
st

re
ng

th
 (M

P
a)

 

Age (days)

Cracking strength σcr 

Free strain εf 

(a) Cracking strength and free strain 

Fig. 2 Time dependent changes in variables. 
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the analytical results. The crack density of each analytical 
case and the measured concrete age are shown in Table 3. 

 
5.3 Method of analysis 
Equation (9) that calculates shrinkage restraint stress was 
subjected to further improvement for analytical accuracy. 
For simplicity, it did not take into account the influence of 
reinforcing bars inside the beam and planar elements. 
Therefore, to reflect this influence, each element is as-
sumed as a uniaxially constraint specimen internally re-
strained by reinforcing bars, and a preliminary stress 
analysis was performed with Equation (17), which is de-
rived from Equation (9). Using σi

st, i.e. the results of the 
preliminary stress analysis, shrinkage strain εi

f induced by 
internal restraint was calculated by Equation (18), while 
σst is calculated by Equation (9) assuming εf = εi

f . Finally, 
as shown in Equation (19), the stress value σi

st derived 
from Equation (17) is added to σst, which is induced by 
external restrained and obtained in Equation (9), and the 
sum worked out to be the total shrinkage restraint stress 
σw

st.  

( )
( ) ( )

{ }
20.5

( ) ( , ) 2 ( )2( , )1 1/ 2

i A Es si t E t t tst i e i j f j
A E t t A E A Ej c e j j s s s s

σ ε= − Δ∑
⋅ + ⋅= +

 (17) 

{ } ( )( ) ( )i it t A A Ei st i c s sfε σ= ⋅ ⋅  (18) 

( ) ( )( )w it t tst i st i st iσ σ σ= +  (19) 

where, As: sectional area of reinforcing bars (mm2); Ac: 
sectional area of concrete (mm2); Es: Young’s modulus of 
reinforcing bar (N/mm2).  

Table 4 shows the input items for each element in Fig. 4. 

Table 3 Result of crack survey. 

Case Inspection Age 
(day) 

Crack density 
(mm2/m2) 

Just before cracking 34 - 
Crack observation 35 6.3 W-1 
Crack observation 65 13.0 

Just before cracking 36 - 
62 38.9 
84 63.2 W-2 Crack observation 

209 63.0 
124 42.6 
133 29.5 S-1 Crack observation 
137 48.7 

S-2 Crack observation 136 147.0 
Floor types of S-1 are the same from 2nd and 4th floor where 
inspection was performed throughout. 

 

 

 
      i) W-1                                     ii) W-2 

 
        iii) S-1                                   iv) S-2 

Fig. 4 Structural elements selected as analytical target.  
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The Young’s modulus of steels Es is assumed as 210000 
N/mm2 without exception. With regard to the two cases of 
floor elements in Fig. 4, the floor slab is restrained by two 
girders (beams) and two joists, and the sum of the sectional 
area of a girder and a joist is assumed to be the sectional 
areas of Beams 1 and 2, respectively, while Ec, φ, εf and ft, 
were calculated with the method explained in Appendix.  

 
5.4 Results of the analysis 
Figure 5 shows changes with time of the calculated 
shrinkage strain of each analytical case up to a material age 
of 200 days. The origin of the material age was the point 
when concrete was placed for the planar element. For wall 
elements in Fig. 5 (a) and (b), the difference in the 
shrinkage strain of beam concrete and that of wall concrete 
is the major driving force of shrinkage restraint stress, 
while this shrinkage strain difference of W-1(a) is ap-
proximately 200μ and W-2(b) shows a bigger value of 
400 μ. This may be attributed to a larger wall thickness of 
W-1 than that of W-2. For floor elements shown in Fig. 5 
(c) and (d), the external restraint body such as steel beams 
do not undergo shrinkage and the shrinkage strain of floor 
concrete serves as the major driving force of the shrinkage 
restraint stress. In these figures, εi

f that takes into account 
the internal restraint shows a smaller absolute strain than εf, 

reflecting the influence of internal restraint.  
Relationship between shrinkage restraint stress and 

cracking strength of each analytical case is shown in Fig. 6. 
The results up to a material age of 200 days show that the 
total shrinkage restraint stress σw

st exceeds σcr in Fig. 6 (a), 
(b) and (d) and σw

st is approaching σcr in Fig. 6 (c). For 
wall elements in Fig. 6 (a) and (b), σi

st accounts for as little 
as approximately 20% of σw

st at maximum, while for floor 
elements in Fig. 6 (c) and (d), the percentage becomes 
larger, i.e., 30 to 50%, indicating that internal restraint is 
more significant. One reason is that, in the two analytical 
cases for floor elements, deck plates are treated as rein-
forcing bars hence the area of reinforcement becomes 
twice as large as that of wall elements, resulting in an 
increase in the shrinkage restraint stress. Another reason is 
that the level of restraint by the beams is relatively smaller 
in floor elements than that in wall elements, hence the 
shrinkage restraint stress by external restrain tends to be 
smaller in floor elements. Thus, one may conclude that the 
higher the volume of reinforcing bars and the smaller the 
external restraint, the bigger the error created by the ig-
norance of internal restraint impacts. It is shown that the 
method taking into account the internal restraint allows the 
calculation of shrinkage restraint stress induced in planar 
elements based on the cracking mechanism that represents 

Table 4 List of input values for the structural elements subjected to analysis. 
Analysis  Member Details W-1 W-2 S-1 S-2 

Original design of 
case study 

Width x Thickness 
(mm) 

750 x 180 1900 x 100 13500 x 150 9600 x 150 9000 x 180 

Planer Reinforcing bar 
(ratio) 

D13@125
(0.56 %) 

D10@100 
(0.68 %) 

D13@200 w 
Deck t=1 mm 

(1.5 %) 
 

D13@150 
D13@200 

Deck 
t=1mm(1.7 %) 

D13@150 
D10@150 

Lattice f6@150 
Deck 

t=1mm(1.4 %) 
Section (mm) 500 x 500 400 x 400 H-600-300-12-28 

H-400-200-8-13 
H-900-300-16-19 
H-600-200-11-13 

H-800-300-14-26 
H-588-300-12-20 Beam 1 

Reinforcing bar D22-6 D19-8 - - - 
Section (mm) 500 x 500 400 x 400 H-600-300-12-28 

H-400-200-8-13 
H-900-300-16-19 
H-600-200-11-13 H-800-300-14-26 

Type of 
structure 

Beam 2 
Reinforcing bar D22-6 D19-8 -  - 

28-day compressive 
strength (N/mm2) 31.8 32.9 36.0 37.2 27.0 

28-day Young’s 
modulus (N/mm2) 25100 24175 - 32600 - 

Water/binder ratio 
(%) 50 50 48.6 51 55 

Unit water (kg/m3) 180 180 162 175 170 

Planer 
or 

Beam 2 

Cement type OPC OPC OPC OPC OPC 
28-day compressive 
strength (N/mm2) 30.6 31.5 

28-day Young’s 
modulus (N/mm2) 22400 23400 

Water/binder ratio 
(%) 50 50 

Unit water (kg/m3) 180 180 

Material 
property 

Beam 1 

Cement type OPC OPC 

- - - 

Demolding 3-day 8-day - - - 

Placement ages 

Beam1 
placed at 

7-day after 
Beam 2 

Beam1 
placed at 

30-day after 
Beam 2 

- - - Others - 

R.H. (%) 60 60 60 60 60 
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the actual phenomena more realistically, thereby being 
able to enhance the accuracy of stress estimation. In the 
following discussions, σw

st is used as the shrinkage re-
straint stress instead of σst, and ηw (= σw

st / σcr) as the 
stress-strength ratio instead of η.  

 
5.5 Discussions and determination of safety 
factor 
Analysis results on ηw with time of each element are 
shown in Fig. 7 where the two cases of wall elements show 
a larger ηw than the two cases of floor elements. This may 
be attributed to the fact that the stiffness of restraining 
beam elements is relatively smaller in the floor elements.  

Relationship between ηw and the crack density obtained 
in the crack survey is shown in Fig. 8, where a correlation 
is found between ηw and the crack density and thus the 
control of ηw may lead to restriction of cracking to a minor 
level even if developed. Since the influence of ηw on the 
crack density is different between wall and floor slab 
elements, linear approximation is separately shown for 
these two types of elements respectively in the figure. It is 
clearly exhibited that, with the same stress-strength ratio, 
the floor slab elements undergo notably extensive cracking. 
Major reasons for this appear that: 1) the analysis does not 
consider the impacts of the fact that, during placing, a floor 
slab is susceptible to micro cracking caused by deforma-
tion and vibration due to the lower stiffness of the deck 

plates, and 2) beam ends are prone to cracking because the 
flexural moment induced by loading during construction 
process is applied to the floor slab element.  

In order to reduce shrinkage cracks, it is generally ac-
cepted to decrease the restraint strain due to the drying 
shrinkage and the degree of restraint. Since the restraint 
strain comprises creep strain and elastic strain directly 
linked to σst, reduction of the restraint strain can lower the 
value of σst and consequently that of ηw. On the other hand, 
crack density is defined as the product of the number and 
width of cracks when assuming a uniaxial element having 
a unit area. It has been proven, by for example Hashida 
(2005), or Nejadi and Gilbert (2004), that the smaller the 
restraint strain, the smaller the width and number of cracks 
become. Thus, a positive correlation between ηw and crack 
density may be expected through the influence of restraint 
strain as shown in Fig. 8. Nonetheless, it should be one of 
the future tasks to examine in detail how structural, mate-
rial and environmental factors affect this correlation.  

Next, an example of the determination of the safety 
factor using Fig. 8 is discussed. According to the figure, it 
is assumed that hardly any cracking occurs if a value of ηw 
is smaller than the intersection of the X-axis with each 
approximated line of wall and floor slab elements. Because 
ηw shows a value of approximately 0.6 at the intersection 
for both wall and floor elements, the critical stress-strength 
ratio for cracking is assumed to be ηw = 0.6. With an as-
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Fig. 5 Shrinkage strain of each element. 
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sumption that the cracking probability at this critical point 
is equivalent to an acceptable engineering defective frac-

tion such as Pfa, the following equation is derived from 
Equation (2): 

( ) [ ] [ ]2 221P COV R COV Sfa ξ ξ
⎡ ⎤

= Φ − + ⋅⎢ ⎥
⎣ ⎦

 (20) 

Adopting the same acceptable defective fraction Pfa = 
0.04 as reference (AIJ 2003b), which is applied when 
determining the specified compressive strength with re-
spect to the assumed compressive strength in mix propor-
tion design of concrete, and substituting 0.2 for COV[R], 
0.15 for COV[S] and η= ηw = 0.6 in solving Equation (20), 
we obtain γ ≈ 1.05. 

The result of this trial calculation, γ ≈ 1.05, should serve 
as a useful reference in the determination of safety factor, 
while the data in Fig. 8 used for the calculation are limited, 
and the guarantee as an adequate level of engineering 
safety still remains as a concern. Thus, to be conservative 
in the calculation of cracking probability, an increased 
value of 1.5, instead of 1.05, is adopted for γ tentatively. 
The shrinkage crack risk curve obtained by adopting γ = 
1.5, COV[S] = 0.15 and COV[R] = 0.2 is shown in Fig. 9 
where the cracking probability is restricted to 0.04, a level 
at which hardly any cracking occurs, with a stress-strength 
ratio of approximately 0.4. Relationship between crack 
density and cracking probability for the four analytical 
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Fig. 6 Total shrinkage restraint stress and cracking 
strength of planar members. 
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Fig. 7 Analytical results for changes with time in the stress-
strength ratio 
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cases derived from the shrinkage crack risk curve is shown 
in Fig. 10 where it is confirmed, within the scope of this 
study, that controlling the cracking probability to Pfa = 
0.04 or a lower level can serve as the considerably con-
servative assessment of both wall and floor elements 
against an actual cracking level. Upon accumulation of 
sample data in the future, the safety factor determined here 
may be reduced from 1.5, providing that the engineering 
safety is not sacrificed.  

It should be noted that for floor slabs, the impacts of 
vertical load should be considered in the calculation of ηw 
and Pf. The slabs studied here are constructed with deck 
plates as permanent form works, which do not require 
supports upon construction process, and their deadweight 
is assumed negligible as is sustained by the deck plates. 
Furthermore, the cracking survey was performed before 
the completion of buildings when no live loads had been 
applied, hence the vertical load was limited to the loading 
during construction work and thus its impacts are limited. 
On the other hand, ordinary R/C slabs that use supports 
during construction are subjected to a significant level of 
flexural stress by deadweight loading after removing 
supports, when the flexural stress is added to σst and its 
impacts should properly be considered.  

 
6. Application examples of the proposed 
control technique 

6.1 Outline of the applied structure and the 
analysis of originally designed elements 
The structural elements chosen for the application are floor 
slabs with truss bars and deck plates constructed on the 2nd 
floor of a 2-story steel-structured distribution facility (See 
Fig. 11 for the floor plan). Details and modeling of the 
elements are shown in Fig. 12. The specifications of bar 
arrangements in the original design and concrete proper-
ties are shown in Table 4. 

The results of analysis performed on σw
st and σcr of the 

originally designed elements according to the procedures 
described in Section 5.3 and the estimated Pf using the 
shrinkage crack risk curve of Fig. 9 are shown in Fig. 13 
and Fig. 14, respectively. As a result, cracking was found 
inevitable, because the shrinkage restraint stress of origi-
nally designed elements exceeded the cracking strength at 
a material age of 300 days onwards in Fig. 13, and the 
maximum value of Pf becomes nearly 1.0 in Fig. 14. 

 
6.2 Analytical results of improved design and 
comparison in terms of the cracking condition 
Various techniques have been proposed to reduce cracking 
risk, while the “Crack-Reducing Concrete” (CRC), using a 
high-performance expansive agent and a shrink-
age-reducing agent (Momose et al. 2005) was adopted in 
this study. Although no method of calculating Pf had been 
established for CRC, this study attempted to perform 
quantitative evaluation of crack-reducing effects by simply 
considering the expanding and shrinking characteristics of 
CRC.  
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Fig. 11 Floor plan of the building to which the proposed 
crack control method was applied (Unit: mm). 

Fig. 12 Configuration of the floor slab subjected to the 
crack control analysis (Unit: mm). 
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The crack-reducing effects of CRC are broadly catego-
rized into the chemical pre-stressing through expansion 
effects of an expansive additive and a reduction of 
long-term drying shrinkage by a shrinkage reducing agent. 
The evaluation was achieved in a simplified manner by 
adopting a compressive stress of 0.8 N/mm2 as the initial 
value of chemical pre-stressing of the actual structure 
referring to the laboratory restraint tests. Likewise, for the 
reduction of long-term drying shrinkage, the drying 
shrinkage strain of CRC was reduced to three quarter of 
that of ordinary concrete on the basis of the laboratory 
drying shrinkage tests. The changes with time in σw

st and 
Pf for CRC application are compared against those of the 
original design in Fig. 13 and Fig. 14, respectively, where 
use of CRC was found to bring about significant im-
provements, showing the possibility of substantial reduc-
tion of the cracking risk; the shrinkage restraint stress is 
significantly reduced, as illustrated by the reduction of Pf 
to approximately 0.2 from a value of approximately 1.0 in 
the case of ordinary concrete. Thanks to the results, CRC 
was actually applied to the construction stage. 

At the time of completion of construction, 3 to 4 months 
after the placing of CRC, few cracks were observed on the 
floor slabs. The shrinkage restraint stress of concrete, 
calculated on the basis of concrete strain measured directly 
above the steel beam of the actual frame (Kanda et al. 
2004), decreased gradually after reaching the maximum 
compressive stress of 0.75N/mm2 at an early age. Then on 
the 80th day, there was a remaining level of 0.3N/mm2 on 
the compressive side (Kanda et al. 2005), showing more or 
less good agreement with the results shown in Fig. 13. 
From these results, the redesign was reasonable on the 
whole, and it is confirmed that the value of σw

st calculated 
by the proposed technique was not far from the actual 
value. Thus, the control technique proposed in this study 
has been proven effective in an actual construction project, 
with its accuracy acceptable to a certain extent.  

 
7. Conclusions 

Focusing on planar elements restrained with beams, this 
study has proposed a shrinkage crack control technique 
capable of assessing the shrinkage cracking risk in terms 
of cracking probability Pf, verified its accuracy and con-
firmed its effectiveness through application to an actual 
construction project. The major findings of this study are 
summarized as follows. 
1) The explicit functions were derived and expressed in 

terms of Taylor series for the driving force of 
shrinkage crack, i.e., shrinkage restraint stress, and for 
the resisting force, i.e., cracking strength. They are 
used for calculating the dispersion, and consequently, 
application of a coefficient of variation of approxi-
mately 0.15 and 0.2, respectively was found feasible. 

2) Comparative estimation of the analytical results of 
stress-strength ratio (ratio of shrinkage restraint stress 
to the cracking strength) and the results of crack sur-
vey on actual structural elements allowed the safety 

factor of 1.5 for the conservative calculation of Pf. 
3) Correlation between the stress-strength ratio and ex-

tent of cracking indicated a possibility of controlling 
cracking to a minor level by reducing the 
stress-strength ratio. 

4) When taking account not only of the external restraint 
by beams but also of the internal restraint by rein-
forcing steels, the calculation of shrinkage restraint 
stress may contribute to an improvement of accuracy.  

5) The proposed crack control technique was applied to 
an actual construction project and its effectiveness 
was consequently confirmed proposing relevant solu-
tions. Though limited, the accuracy of the technique 
was verified to a certain extent.  

Because the crack control technique proposed in this 
study does not consider such factors as an increase in the 
degree of restraint in continuous spans, impacts of thermal 
strain and vertical load on floor slab elements, its applica-
tion has limitations where these factors have major im-
pacts. If the proposed technique is enhanced to involve 
these factors, an improved accuracy and application to 
more general and a wider scope of projects will become 
possible. Incorporation of these factors and detailed stud-
ies of the accuracy are left as the subjects of the future 
research.  
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Appendix 
a) Compressive strength (fib 1990) 

fcm(t)=bcc(t) •fcm(28) (appendix 1) 
bcc(t) =exp(s• (1-(28/(t/1))0.5)) (appendix 2) 
where fcm(t): compressive strength at an age of t 
(N/mm2) 
s: cement factor (=0.25) 

b) Young’s modulus (AIJ 2003b; fib 1990) 
Ec(t)= bE(t) •Ec(28) (appendix 3) 
Ec(28)=33500•k1•k2×(r/2.4)2.0• (Fc/60)1/3  (appendix 4) 
where Ec(t): Young’s modulus at an age of t (N/mm2) 
bE(t): rate factor (=bcc(t)0.5) 
k1, k2: coefficients (1.0) 
r: specific mass (ton/m3) 
Fc: design strength (N/mm2) 

c) Tensile strength (Noguchi and Tomosawa 1995) 
ft(t)=0.291•fcm(t)0.637 

  (appendix 5) 
where ft(t): tensile strength at an age of t (N/mm2) 

d) Creep coefficient (fib 1990) 
φ (t,t0)=  φ∞•βc(t,t0) (appendix 6) 

φ∞= φ RH•β (f cm(28)) •β (t0) (appendix 7) 
φ RH=1+(1-RH/100)/(0.46•(h/100)1/3) (appendix 8) 
β (fcm(28))=5.3/(( fcm(28)/10)0.5) (appendix 9) 
β (t0)=1/(0.1+( t0(cem)/1)0.2) (appendix 10) 
t0(cem) = t0• ((9/(2+( t0/1)0.5))+1)α＞0.5 (appendix 11) 
h =2×Ac/u (appendix 12) 
βc(t,t0)=(((t- t0)/1)/( βH+(t- t0)/1))0.3 (appendix 13) 
βH = 150• (1+(1.2×RH/100)18) •h/100+250≦1500 
 (appendix 14) 
where (t,t0): creep coefficient at an age of t when 
specimen loaded at t0 
α: cement factor (= 0) 
RH: relative humidity (%)，h: effective thickness (mm) 

e) Drying shrinkage (Momose et al. 2004; JSCE 2002b;   
Rüsch and Jungwirth 1976) 

ε’cs(t,t0 sh)=ks(t, t0 sh) • ε’sh  (appendix 15) 
ε’sh=500-780• (1-exp(RH/100))- 380•logeW+ 50• 
(loge(25)/10)2 (appendix 16) 
ks(t, t0 sh)= ka• (1-exp(-kb• (t- t0 sh) kc)) (appendix 17) 
ka=0.5765•exp(-0.0104•V/S)+0.7137 (appendix 18) 
(1.19 when V/S≦25 and 0.70 when V/S≧800) 
kb=0.5431•exp(-0.3346•V/S 0.4608) (appendix 19) 
(0.1249 when V/S≦25 and 0.0004 when V/S≧800) 
kc=-0.7140•exp(-0.0011•V/S)+1.2361 (appendix 20) 
(0.53 when V/S≦25 and 0.94 when V/S≧800) 
where ε’cs(t,t0 sh): shrinkage strain at an age of t (μ) 
W: unit water (kg/m3)， V: volume (mm3) 
S: outdoor exposing area (mm2)，  t0 sh: age when  

drying starts (day) 
f) Autogenous shrinkage (Tazawa and Miyazawa 1997) 

ε c(t)= ε c•ε c0(W/B)×β(t) (appendix 21) 
when 0.2≦W/B≦0.5 
ε c0(W/B)=3070•exp(-7.2(W/B)) (appendix 22) 
when W/B＞0.5 
ε c0(W/B)=80 (appendix 23) 
β (t)= 1-exp(-a(t-t0)b)) (appendix 24) 
where ε c(t): autogenous shrinkage strain at an age t (μ) 
γc: factor representing the effects of cement and ad-

mixture 
a: constant (0.1 for case S-2 and 0.03 for other cases) 
b: constant (0.7 for case S-2 and 0.8 for other cases)

 


