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Abstract 
A previously published multiscale model for early-age cement-based materials [Pichler et al. 2007. “A multiscale mi-
cromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials.” Engineering 
Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links 
macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the 
(supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its 
history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland ce-
ment (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are 
identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed 
by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to empirical 
creep models, such as the so-called B3 model. Finally, the developed multiscale model is incorporated in the macroscopic 
analysis of shotcrete tunnel linings. Hereby, the early-age properties of shotcrete are specified by the presented multiscale 
model, taking mix design, cement characteristics, and on-site conditions into account.  
 

 
1. Origin of creep of cement-based 
materials 

Modeling of creep of cement-based materials and the 
identification of the underlying physical processes in the 
calcium-silicate-hydrates (CSH)*1 at finer observation 
scales remain intensively discussed topics within the 
scientific community. Bažant and coworkers (see, e.g., 
Bažant et al. (1997)) have developed the, to date, most 
widely used model for creep of early-age cement-based 
materials. According to Bažant et al. (1997), the source 
of creep is the relaxation of microprestress, which is 
generated as a reaction to the disjoining pressure in mi-
cropores (intra-hydrate pores). Increased stresses at these 
so-called creep sites increase the ease of bond breakage 
and, hence, increase the creep rate. Hereby, recently 
formed hydration products contain a high density of 
creep sites, whereas continuous microprestress relaxa-
tion reduces the creep potential of CSH. 

Recently, Jennings pointed out that “... there are fun-
damental chemical and thermodynamic arguments 
against the idea that large internal stresses are formed 
during hydration. CSH forms under near-equilibrium 
conditions with respect to the aqueous phase, making it 

unlikely that high internal stresses that could act as creep 
sites would develop ...” (Thomas and Jennings 2006). 
Jennings and coworkers have developed a structural 
model for CSH at the nanometer-scale accounting for the 
colloidal nature of CSH. Hereby, CSH is described as an 
aggregation of precipitated, colloid-sized particles 
(Jennings 2000, 2004) with the “basic building blocks” 
(radius of 1.1 nm) aggregating into “spherical globules” 
(radius of 2.8 nm). The latter aggregate further into (i) 
low-density CSH (CSH-LD) or (ii) high-density CSH 
(CSH-HD), depending on w/c-ratio, age, and environ-
mental conditions (Jennings 2000, 2004). According to 
Jennings (2004), the origin of viscous deformations is 
explained by the re-arrangement (dislocation) of glob-
ules under shear stress (or drying). 

In both microscopic (Pichler and Lackner 2007) and 
macroscopic creep tests, a logarithmic-type behavior is 
encountered, i.e., the creep compliance is proportional to 
ln (1 + / vt τ ), where vτ  denotes the characteristic time 
of the creep process. According to Nabarro (2001), the 
two mechanisms leading to logarithmic creep in crystal-
line solids are either 
• work hardening: dislocations move forward under 

the applied stress by overcoming potential barriers, 
while successively raising the height of the potential 
barriers or 

• exhaustion: while neglecting work hardening, the 
barriers to dislocation motion do not have equal ac-
tivation energies; those with relatively small acti-
vation energies are overcome faster than those with 
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relatively large activation energies; if each barrier 
which is overcome contributes an equal increment 
of strain, the total strain increases linearly with the 
increasing activation energy, where the latter is a 
logarithmic function of time. 

The mentioned dislocation-based mechanism is consis-
tent with the creep mechanism proposed in Jennings 
(2004). 

In this paper, the logarithmic-type creep behavior en-
countered during nanoindentation tests is transferred to 
the macroscale by developing a multiscale model for 
basic creep of early-age cement-based materials. With 
the multiscale model at hand, viscous properties of the 
creep-active constituent at finer scales, i.e., CSH, can be 
assessed by means of results from macroscopic creep 
tests. The focus of this paper is on the experimental 
identification of CSH creep properties suitable for mul-
tiscale modeling, avoiding speculative arguments on the 
physical/chemical processes associated with creep. Mi-
crostructural changes associated with creep such as, e.g., 
bond breakage take place at a far finer scale as investi-
gated by nanoindentation. Thus, the employed constitu-
tive law for CSH (μm-scale) represent these processes 
(nm-scale) in a homogenized manner. 

The paper is structured as follows: In Sections 2 and 3 
the previously developed multiscale model (Pichler et al. 
2007) and upscaling of elastic properties are reviewed. 
Section 4 deals with upscaling of the viscoelastic com-
pliance. The presented upscaling scheme is used in Sec-
tion 5 for determination of creep parameters of CSH 
through a top-down application of the multiscale model 
starting from macroscopic creep tests. Finally, the mul-
tiscale model is employed for determination of early-age 
properties of shotcrete in the context of a hybrid analysis 
of shotcrete tunnel linings (Section 6). 

 
2. Proposed multiscale model 

The multiscale model proposed in Pichler et al. (2007) 
for upscaling of viscoelastic properties and autoge-
nous-shrinkage of early-age cement-based materials 
comprises four length scales, which are identified as (see 
Fig. 1)*2: 
• Scale I comprises the four clinker phases, 

high-density CSH (CSH-HD) and low-density CSH 
(CSH-LD), and the water and air phase. The four 
clinker phases, which do not exhibit time-dependent 
behavior, are condensed into one material phase 
(Scale Ia). The constituents showing time-dependent 
behavior, on the other hand, are combined at Scale 
Ib-1, where CSH-HD is located in the space con-
fined by the previously formed CSH-LD. At the 
porous CSH scale (Scale Ib-2), water and air are 

considered as inclusions in a matrix constituted by 
the homogenized material of Scale Ib-1. 

• At Scale II (cement-paste scale), anhydrous cement 
(homogenized material of Scale Ia), gypsum 2CSH , 
portlandite CH, and reaction products from C3A and 
C4AF hydration form inclusions in a matrix con-
stituted by the homogenized material of Scale Ib-2. 

• At Scale III (mortar or concrete scale), aggregates 
are represented as inclusions in the cement paste 
(homogenized material of Scale II). In addition to 
aggregates and cement paste, the interface transition 
zone (ITZ) may be introduced at Scale II. Since the 
ITZ mainly influences strength and transport prop-
erties of concrete rather than viscous deformations, 
it is not considered in the present model. 

• Finally, at Scale IV (macroscale), concrete is treated 
as a continuum. 

In order to determine the volume fractions of the dif-
ferent phases in the respective RVEs, the following set of 
stoichiometric reactions is employed for the four main 
clinker phases of ordinary Portland cement (OPC) (Ten-
nis and Jennings 2000): 

3 3.4 2 8C S 5.3H 0.5C S H +1.3CH+ →  (1) 

2 3.4 2 8C S 4.3H 0.5C S H +0.3CH+ →  (2) 

4 3 6C AF+2CH+10H 2C (A,F)H→  (3) 

3 2 6 323C A+3CSH +26H C AS H→  (4) 

3 6 32 4 123C A+0.5C AS H +2H 1.5C ASH→  (5) 

3 4 13C A+CH+12H C AH→  (6) 

Eqs. (4) to (6) describe the formation of calcium alumi-

*2Morphological investigations at lower scales of observation 
can be found in, e.g., Bentz (1997) [anhydrous cement], Dia-
mond (2004) [cement paste], and Neubauer and Jennings 
(2000) [CSH]. 
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Fig. 1 Scales of observation for upscaling of properties of 
cement-based materials [ = size of representative vol-
ume element (RVE)]. 
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nate hydrates from C3A in the presence of gypsum, which 
is added to prevent rapid setting of C3A. 

The hydration extent is described by the degree of 
hydration of the clinker phases, ξx with x ∈  {C3S, C2S, 
C4AF}. A recently developed (Bernard et al. 2003) and 
refined (Pichler 2007) kinetics model is used to deter-
mine the hydration history ξx (t). Input parameters for the 
kinetics model comprise the Blaine (grinding) fineness ø 
of the employed Portland cement, the medium initial 
radius of the clinker grains R, the mass fractions of the 
clinker phases, and the water/cement-ratio w/c. Based on 
the stoichiometric reactions given in Eqs. (1) to (6), and 
the molar masses Μ and densities ρ of the different ma-
terial phases (see, e.g., Tennis and Jennings (2000)), the 
volume fractions of the different phases (at the ce-
ment-paste scale) can be determined as a function of the 
hydration degrees ξx and the mass fractions of the clinker 
phases mx. This is shown exemplarily for the volume 
fraction of C3.4S2H8 appearing in Eqs. (1) and (2): 
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ρ
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The overall degree of hydration, ξ, is computed as 

x x
x

x
x

m

m
=
∑

∑

ξ
ξ  (9) 

where x ∈  { 3
C S , C2S, C3A, C4AF, }2CSH  and mx 

representing the mass fractions of the four clinker phases 
and gypsum. Hereby, 

2CSHξ  is linearly coupled to 
3C Aξ  

[see Eq. (4)]. Figure 2 shows the evolution of the volume 
fractions at the cement-paste scale as a function of ξ for 
shotcrete with a w/c of 0.48 (see Appendix 2(a)). 

 
3. Upscaling of elastic properties 

The four length scales introduced in the previous section 
obey the separability of scale condition, i.e., they are 
separated one from each other by at least one order of 
magnitude. With volume fractions of the different phases 
at the respective observation scales at hand, continuum 
micromechanics is employed to estimate effective elastic 
properties. For homogenization at Scale Ia, the 
self-consistent (SC) scheme, suitable for a polycrystal-
line microstructure, is used (Kroener 1958; Hershey 
1954). During homogenization at Scales Ib to III, the 

matrix-inclusion type morphology is taken into account 
by the Mori-Tanaka scheme (MT) (Mori and Tanaka 
1973). Homogenization schemes based on continuum 
micromechanics consider a representative volume ele-
ment (RVE) subjected to a homogeneous strain E  at its 
boundary. These schemes depart from the definition of 
the so-called strain-localization tensor A linking the 
effective strain tensor E  with the local strain tensor ε  
at the location x : 

( ) ( ) :=x x Eε A  (10) 

The effective strain tensor E  represents the volume 
average of the local strain tensor ε: 

1= ( ) = ( )
V V

dV
V

E x xε ε∫  (11) 

Inserting Eq. (10) into Eq. (11), one gets E  = 
( )

V
xA  : E  and, thus, ( )

V
xA  = I . Considering an 

ellip-soidal inclusion i embedded in a reference medium 
characterized by the material tensor 0C , the strain-lo-
calization tensor A  within the domain i is constant and 
given by (Eshelby 1957) 

[ 11
0

1
11

0
0,

: ( : ) :

[ : ( : ) const

i i i

r r r
r i

f

−−

−
−−

=

⎤= + − ⎦
⎧ ⎫

⎤+ − =⎨ ⎬⎦
⎩ ⎭
∑

C C

C C

A I S I

I S I
 (12) 

with Ci  as the material tensor of the inclusion i and 0C  
as the material tensor of the reference medium. Si  
denotes the Eshelby tensor, conditioned by the geometric 
properties of the inclusion and the elastic properties of 
the reference medium. 

The volume average of the local stress tensor σ(x) 
determines the effective stress tensor Σ: 

Σ
1( ) = ( )dVvV V

σ x σ x= ∫  (13) 

fC S̄H 2f C 4AF
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Fig. 2 Variation of the volume fractions at the cement-
paste scale as a function of the overall degree of hydra-
tion ξ for shotcrete employed at the Lainzer tunnel (see 
Appendix 2(a)). 
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Considering a linear-elastic constitutive law for the 
r-th material phase, linking the local strain tensor with 
the local stress tensor, 

( ) : ε ( )r r r=σ x x  (14) 

and Eq. (10) in Eq. (13) one gets 

Σ ( ) ( ): :
V

= x x ΕA  (15) 

Comparison with Σ = effC : E*3 gives access to the ef-
fective material tensor effC : 

( ) ( ):eff V
= x xA  (16) 

Considering the morphology of the composite material, 
the unknown strain localization tensor A , which so far 
is available for a single inclusion [Eq. (12)], can be es-
timated based on the choice of 0C : 
• In case the microstructure is characterized by a dis-

tinct matrix/inclusion-type morphology, 0C  is set 
equal to the material tensor of the matrix material 

mC . This estimation leads to the Mori-Tanaka (MT) 
scheme (Mori and Tanaka 1973). 

• For a polycrystalline microstructure, i.e., the mate-
rial phases are equally dispersed, and none of them 
forms a matrix, 0C  is replaced by the effective 
material tensor effC . The obtained implicit method 
is referred to as self-consistent (SC) scheme (Her-
shey 1954; Kroener 1958). 

Using 

( ) ( ) ( )
( )

0

0

0

0

i

i
VV V

i iV

V V
V V

f f

= + =

→ = −

x x x

x

A A A I

A I A
 (17) 

where ( )
iV

xA  = iA  = const. was used and if  and 
0f  denote the volume fractions of the inclusion and 

reference medium, respectively, and Eq. (12), one gets 
the volume average of the localization tensor over the 
reference medium as*4 

1

0
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1
1

0,
( ) [ :( : )]r r rV

r i
f −

−

−

∈

⎧ ⎫
= + −⎨ ⎬
⎩ ⎭
∑x I S IA   (19) 

Considering Eqs. (19) and (12) in Eq. (16) gives ac-
cess to the effective material tensor 
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∑

∑

 (20) 

Eq. (20) can be extended to multiple types of inclusions, 
reading 

( )

( )
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eff r r r r
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⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤+ −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭

∑

∑
 (21) 

with r  ∈  {matrix material = reference medium 0, in-
clusion 1, inclusion 2, ... }for the case of the MT scheme 
and r  ∈  {material phases }in case of the SC scheme 
with the material tensor of the reference medium 0C  set 
equal to the effective material tensor effC . In the fol-
lowing, Eq. (21) is specialized for the application to 
cement-based materials, characterized by isotropic ma-
terial behavior. Thus, Eq. (21) can be reduced to the 
specification of the effective shear and bulk modulus, 

effμ  and effk , respectively: 
• For the SC scheme, 
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 where α  and β  represent the volumetric and 
 deviatoric part of the Eshelby tensor S  specialized 
 for spherical inclusions, reading 

 
3

3 4
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+
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*3 Levin’s theorem states that the effective state equation is of
the same form as the local state equation (Zaoui 1997).  
*4 
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• For the MT scheme, 
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Applying the SC scheme to Scale Ia, the different 
material phases are given by r  ∈  {clinker phases C3S, 
C2S, C3A, C4AF}. The MT scheme is applied at Scales 
Ib.1, Ib.2, II, and III with the material phases given by  
r  ∈  {matrix material m  and multiple inclusions, such 
as, e.g., water and air at Scale Ib.2 }. In Eqs. (24) and (25), 
the material matrix m is represented by low-density CSH 
at Scale Ib.1, the homogenized material determined at 
Scale Ib.1 at Scale Ib.2, the homogenized material de-
termined at Scale Ib.2 at Scale II, and the homogenized 
material determined at Scale II at Scale III. Figure 3 
shows a comparison of the elastic properties predicted by 
the multiscale model and test results for shotcrete, using 
the finer-scale input listed in Appendix 2(a)). Hereby, 
the effective Poisson’s ratio, νeff, is continuously de-
creasing in case the bulk modulus of water is set to  

wk =2.3GPa, starting from an initial value of 0.5. For 
wk =0, on the other hand, νeff is continuously increasing 

(see Fig. 4). 
 

4. Upscaling of creep properties 

Viscous material response is characterized by (i) an in-
crease of deformation during constant loading (creep) 
and (ii) a decrease of stress for constraint deformation 
(relaxation). The viscous response is commonly de-
scribed by the creep compliance -1 [Pa ]J  and the re-
laxation modulus  [Pa]R , both dependent on time. The 
creep compliance associated with uniaxial loading is 
determined as 

( ) ( )
0

t
J t

ε
σ

=  (26) 

with ( )tε  denoting the measured strain, and 0σ  rep-
resenting the applied constant stress. The relaxation 
modulus, on the other hand, is determined from the 

measured stress decrease ( )tσ  in consequence of a 
constant strain 0ε  as 

( ) ( )
0

t
R t

σ
ε

=   (27) 

Introducing the Boltzmann convolution integral, Eqs. 
(26) and (27) can be expanded towards variable (non-
constant) stress or strain histories, respectively: 
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t
t J t d

σ τ
ε τ τ

τ
∂

= −
∂∫  and 

( ) ( ) ( )
0

t
t R t d

ε τ
σ τ τ

τ
∂

= −
∂∫  (28) 

where τ  denotes the time instant of loading. Applying 
the Laplace transform*5 to Eqs. (28) gives 

( ) ( ) ( )ˆˆ ˆp pJ p pε σ=  and ( ) ( ) ( )ˆ ˆˆ ,p pR p pσ ε=  

with ( )
( )
1ˆ

ˆpJ p
pR p

=  (32) 
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Fig. 3 Comparison between test results (Lackner et al. 
2002b) and multiscale model for upscaling of elastic 
properties for shotcrete employed at the Lainzer tunnel 
(see Appendix 2(a)) for isothermal conditions. (T = const. 
=11℃). 
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Fig. 4 Result from upscaling of elastic properties for 
shotcrete employed at the Lainzer tunnel (see Appendix 
2(a)) for isothermal conditions (T = const. = 20℃) con-
sidering (a) kw = 2.3 GPa and (b) kw = 0. 
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considering that the Laplace transform of the convolution 
integral becomes a multiplication and /ε τ∂ ∂  turns into 

ˆpε . Considering the definition of the Laplace-Carson 
transformation as f ★ = ˆpf  in Eqs. (32) yields 

( ) ( ) ( )p J p p
★ ★ ★

ε σ=  and ( ) ( ) ( ),p R p p
★ ★ ★

σ ε=  

with ( )
( )
1J p

R p
★

★=  (33) 

The analogous form of σ
★

= R ε
★

 in Eq. (33) and the 
elastic constitutive law σ = Eε  is the basis for the 
“correspondence principle” (Lee 1955; Mandel 1966; 
Laws and McLaughlin 1978). According to this principle, 
viscoelastic problems are solved using the respective 
solution of the elastic problem in the Laplace-Carson 
domain. 

The Laplace-Carson transform method (Lee 1955) for 
the solution of linear viscoelastic boundary value prob-
lems (BVPs) is characterized by the elimination of the 
time dependence by applying the Laplace-Carson trans-
form to the field equation (which contains the time de-
pendent moduli) as well as the boundary conditions, and 
solving the “corresponding” elastic problem in the 
Laplace-Carson domain*6. The application of the 
Laplace-Carson transform method is restricted to BVPs 
with the location of the boundary conditions in tractions 
and displacements fixed in time. Hence, the method can 
be adopted for derivation of viscoelastic homogenization 
schemes, which are based on an inclusion embedded in 
an (infinite) matrix with homogeneous boundary condi-
tions as it is the case in the framework of continuum 
micromechanics. Applying this method, the elastic ma-
terial parameters, e.g., the shear compliance devJ =1/μ, 
where μ  is the shear modulus, are replaced by the 
Laplace-Carson transform of the respective viscoelastic 
material parameters, e.g., the Laplace-Carson transform 
of the creep compliance associated with deviatoric creep 

devJ
★

. The solution of the viscoelastic problem in the 
time domain is obtained by inverse Laplace-Carson 

transformation. E.g., application of the correspondence 
principle to the MT scheme introduced for upscaling of 
elastic properties in Section 3 gives access to the effec-
tive creep compliance of matrix-inclusion type compos-
ites (see, e.g., Beurthey and Zaoui (2000) for an appli-
cation of the correspondence principle to the 
self-consistent scheme). 

As outlined in the Section 1, viscoelastic behavior of 
cement-based materials originates from dislocation-like 
processes within CSH. Hence, as for homogenization at 
Scale Ib-2, viscoelastic material behavior is assigned to 
the matrix material (CSH), while the inclusions (water, 
air) exhibit elastic deformations only. Motivated by the 
macroscopic observation that, after a period of rapid 
decrease, the compliance rate of cement-based materials 
follows J ～1/ t  (Ulm et al. 1999) (see, e.g., experi-
mental results in Acker and Ulm (2001)), a logarith-
mic-type deviatoric creep law is employed to describe 
creep of CSH: 

( ) ,
,

1 ln 1dev v dev
CSH CSH v dev

CSH CSH

tJ t J ττ
μ τ

⎡ ⎤−⎢ ⎥− = + +⎢ ⎥⎣ ⎦
 (34) 

Volumetric creep of CSH, on the other hand, is omitted. 
In addition to observations at the macroscale, this type of 
creep law was also found at the μm-scale of observation 
by means of nanoindentation tests (Pichler and Lackner 
2007). 

The Laplace-Carson transform of the deviatoric creep 
compliance of CSH given in Eq. (34) reads 

( )
, , ,1 exp 0,

dev dev
CSH CSH

v dev v dev v dev
CSH CSH CSH

CSH

J J t

J p p

★

τ

τ τ
μ

⎡ ⎤= −⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= + Γ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

LC

 (35) 

with Γ  denoting the incomplete gamma-function*7. 
Applying the correspondence principle to the effective 
creep compliance obtained by the MT scheme [Eq. 
(24.1)], the Laplace-Carson transform of the effective 
deviatoric creep compliance at Scale Ib.2 is obtained as 

1

1

1 1

1 1

dev
m

r dev
r rdev

eff
dev
mr

dev dev
r r r

Jf
J

J
Jf

J J

★

★

★

★

★

★

★ ★

β

β

−

−

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜+ − ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦=
⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜+ − ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

∑

∑
 (37) 

with r  ∈  { m  = CSH, air, water}. 
In Eqs. (37), 

*5 Whereas the Laplace transformation of f(t) is defined as 

-

0
ˆ( ) ( ) ( ) ptf t f p f t e dt

∞
= ∫L[ ]=  (29)

with p as the complex variable, the Laplace-Carson transfor-
mation of f(t) is given as 

0
[ ( )] ( ) ( ) ptf t f p p f t e dt★

∞
−= = ∫LC  (30)

Hence, f ★ (p) = ˆ ( )pf p . The inverse Laplace-Carson trans-
formation is defined in the complex plane as 

1 ( )[ ( )] ( )
2

ptf pf p f t e dp
i p

★

★

Ω
= =

π ∫
-1LC  (31)

where Ω is a parallel to the imaginary axis having all poles of 
( )f p★ to the left. 

*6 Hence, this method is restricted to BVPs with boundary 
conditions admitting such an operation. 

*7 The incomplete gamma function Γ[a, z] satisfies  

Γ[a, z] = 1a t

z
t e dt

∞
− −∫  (36)
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( )
( )

6 1/ 2 /

5 3/ 4 /

vol dev
m m

vol dev
m m

J J

J J

★ ★

★

★ ★
β

+
=

+
 (38) 

represents the deviatoric part of the (Laplace-Carson 
transformed) Eshelby tensor specialized for spherical 
inclusions. In Eqs. (37) and (38), dev

rJ
★

=1/μ and 
dev
mJ

★

=1/ mk  for the case of elastic material response. 
Inserting Eq. (35) into Eq. (37) and performing the in-
verse Laplace-Carson transformation gives access to the 
effective deviatoric creep compliance, ( )dev

effJ t = 
-1[ ]dev

effJ
★

LC . Hereby, the inverse transformation was 
performed in a pointwise manner (for discrete values of 
t >0) by applying the Gaver-Stehfest algorithm (Stehfest 
1970). Implying an affine form of the creep compliance 
of CSH, dev

CSHJ  [see Eq. (34)], and the effective creep 
compliance, ( )dev

effJ t , respectively, the discrete points 
from inverse transformation are approximated by 

( )
( )

( )
( )

,
,

1

ln 1

dev
eff

eff

v dev
eff v dev

eff

J t

tJ

τ
μ ξ τ

τξ τ
τ ξ τ

− = +⎡ ⎤⎣ ⎦
⎛ ⎞− ⎟⎜ ⎟⎡ ⎤ ⎜ + ⎟⎜⎣ ⎦ ⎟⎡ ⎤⎜ ⎟⎟⎜⎝ ⎠⎣ ⎦

 (39) 

giving access to the effective creep parameters 
, [ ( )]v dev

effJ ξ τ  and , [ ( )]v dev
effτ ξ τ  [see Fig. 5(a)]. In Eq. (39), 

[ ( )]effμ ξ τ  is the effective shear modulus determined 
according to Eq. (24.1). Examining the volumetric part 
of the Eshelby tensor specialized for spherical inclusions, 
with 

3/
3/ 4 /

vol
m

vol dev
m m

J
J J

★

★

★ ★α =
+

 (40) 

deviatoric creep in the matrix material (CSH) triggers 
(effective) volumetric creep deformations at Scale Ib.2. 
The Laplace-Carson transform of the effective volumet-
ric creep compliance is obtained as 

1

1

1 1

1 1

vol
m

r vol
r rvol

eff
vol
mr

vol vol
r r r

Jf
J

J
Jf

J J

★

★

★

★

★

★

★ ★

α

α

−

−

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜+ − ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦=
⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜+ − ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

∑

∑
 (41) 

with r  ∈  { m =CSH, air, water}, 

where vol
rJ

★

=1/ rk  for the case of elastic material re-
sponse. After applying the inverse Laplace-Carson 
transformation (Stehfest 1970) to Eq. (41), the discrete 
points were approximated by 

( )
( )

( )
( )

,
,

1

ln 1

vol
eff

eff

v vol
eff v vol

eff

J t
k

tJ

τ
ξ τ

τξ τ
τ ξ τ

− = +⎡ ⎤⎣ ⎦
⎛ ⎞− ⎟⎜ ⎟⎡ ⎤ ⎜ + ⎟⎜⎣ ⎦ ⎟⎡ ⎤⎜ ⎟⎟⎜⎝ ⎠⎣ ⎦

 (42) 

[see Fig. 5(b)]. Hereby, [ ( )]effk ξ τ  is the effective bulk 
modulus determined according to Eq. (24.2). The effective 
creep parameters , [ ( )]v dev

effJ ξ τ , , [ ( )]v vol
effJ ξ τ , , [ ( )]v dev

effτ ξ τ , 
and , [ ( )]v vol

effτ ξ τ  [see Eqs. (39) and (42)] define the matrix 
behavior at the next higher scale of observation (Scale II). 
At this scale, the homogenization procedure described 
above [Eqs. (37) to (42)] is applied accordingly, with the 
material phases r  ∈  {matrix m  as the effective mate-
rial determined at Scale Ib.2; inclusions: anhydrous ce-
ment, gypsum, monosulfate, ettringite, portlandite, 
C3(A,F)H6}. The effective creep parameters determined at 
Scale II serve as input for material matrix at Scale III, 
where the material phases r  ∈  {matrix m  and aggre-
gates} and the homogenization procedure is applied once 
more. Hereby, inverse Laplace-Carson transformation is 
performed, equally to Scale Ib.2, in a point-wise manner, 
with subsequent approximation according to Eqs. (39) and 
(42) (see Fig. 6). Figure 7 illustrates the described up-
scaling procedure for the shotcrete already considered in 
Fig. 4 (see in Appendix 2(a)), giving access to the effec-
tive creep parameters , ( )v dev

effJ ξ , , ( )v vol
effJ ξ , , ( )v dev

effτ ξ , and 
, ( )v vol

effτ ξ . 
Early-age cement-based materials are characterized by 

a continuously changing microstructure, i.e., the volume 
fractions of the material phases at the respective scale of 
observation change with the hydration extent. At Scale 
Ib.2, e.g., the volume fraction of creep-active CSH in-
creases, while the water fraction is continuously de-
creasing. The dependence of the creep parameters on the 
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Fig. 5 Approximation of effective creep compliance ob-
tained from inverse Laplace-Carson transformation at 
Scale Ib.2 for different hydration extents (using

,v dev
CSHJ =0.175 GPa−1 and ,v dev

CSHτ =1 h). 
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hydration extent and, thus, on the time is considered by 
the reformulation of the Boltzmann convolution integral 
[Eq. (28)] in terms of the creep-compliance rate J , 
giving the viscous part of the strain tensor in the form 

( ) { } ( ),

0
ˆ ˆ ˆ, ( ) :

t t
v v aget t t dt dJ

∂⎤⎡= − ⎥⎣ ⎦ ∂∫ ∫τ

τ
τ ξ τ

τ
σ

ε  (43) 

where ,v ageJ  denotes the aging creep-compliance rate, 
with 

( )
( )
( )

( )
( )

,
,

,

,

,

ˆ1ˆ ˆ,
ˆ ˆ3

ˆ1
ˆ ˆ2

v vol
effv age vol

v vol
eff

v dev
effdev

v dev
eff

J t
t t

t t

J t

t t

ξ
τ ξ

τ τ ξ

ξ

τ τ ξ

⎡ ⎤⎢ ⎥⎣ ⎦⎡ ⎤− = +⎢ ⎥⎣ ⎦ ⎡ ⎤− + ⎢ ⎥⎣ ⎦
⎡ ⎤⎢ ⎥⎣ ⎦

⎡ ⎤− + ⎢ ⎥⎣ ⎦

J I

I

 (44) 

In Eq. (44), volI  and devI  are defined as 

1/3 1/3 1/ 3 0 0 0
1/3 1/3 1/ 3 0 0 0
1/3 1/3 1/ 3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

volI

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (45) 

and 

2 / 3 1/3 1/3 0 0 0
1/3 2 /3 1/3 0 0 0
1/3 1/3 2 /3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

devI

⎡ ⎤− −⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (46) 

Figure 8 compares the non-aging creep-compliance 
rate*8 with the aging creep-compliance rate according to 
Eq. (44) for uniaxial loading and different time instants 
of loading τ , corresponding to ( )ξ τ =0.2, 0.4, 0.6, and 
0.8. 

During hydration of concrete, new hydration products 
are formed in a state free of microstress (Bažant 1979), 
and loaded exclusively by stresses applied after forma-
tion. This situation is accounted for by an incremental 
stress-strain law for the elastic part of the strain reading 

( ) ( ) ( )

( )

( )
( )

1 :

1 1
3

1 1 :
2

e

vol

eff

dev

eff

d d

k

d

I

I

τ ξ τ τ

ξ τ

τ
μ ξ τ

− ⎡ ⎤= ⎣ ⎦
⎧⎪⎪= +⎨ ⎡ ⎤⎪⎪⎩ ⎣ ⎦

⎫⎪⎪⎪⎬⎡ ⎤⎪⎪⎣ ⎦⎪⎭

ε σ

σ

 (48) 

giving the total strain tensor as 

( ) ( ) ( )

{ ( )

( ) } ( )

1

0

, ˆ ˆ ˆ, :

e v

t

t
v age

t t t

t t dt d
τ

ξ τ

τ
τ ξ τ

τ

−

= +

⎡ ⎤= +⎣ ⎦
∂⎡ ⎤−⎢ ⎥⎣ ⎦ ∂

∫

∫ J

ε ε ε

σ

 (49) 
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Fig. 6 Approximation of effective creep compliance ob-
tained from inverse Laplace-Carson transformation for 
ξ(τ) = 0.2 (using ,v dev

CSHJ =0.175 GPa−1 and ,v dev
CSHτ =1 h).
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Fig. 7 Effective creep parameters for shotcrete employed 
at the Lainzer tunnel [see Appendix 2(a)] (using

,v dev
CSHJ =0.175 GPa−1 and ,v dev

CSHτ =1 h). 
 

*8 The non-aging creep-compliance rate is determined (for 
sake of comparison) as 

, ,
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 (47)

where τ is the time instant of loading. 
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5. Identification of creep parameters 

5.1 Identification of ,v dev
CSHJ  and ,v dev

CSHτ  
In order to determine the intrinsic creep parameters of 
CSH, ,v dev

CSHJ  and ,v dev
CSHτ , macroscopic creep tests are used 

in conjunction with the described multiscale model. For 
this purpose, a top-down application of the presented 
multiscale model is applied by adapting the finer-scale 
intrinsic input parameters aiming at a correct prediction 
of the macroscopic creep data. Figure 9 shows the 
time-dependent part of the employed deviatoric creep 
compliance for CSH, ,v dev

CSHJ ln[1 + ( t －τ )/ ,v dev
CSHτ ] [see 

Eq. (34)] for different time instants of loading τ ,given 
by τ / ,v dev

CSHτ . Taking the derivative of Eq. (34), giving 
,

,

v dev
dev CSH
CSH v dev

CSH

J
J

t τ τ
=

− +
 (50) 

and specializing Eq. (50) for ( t －τ )  ,v dev
CSHτ  gives 

access to the long-term asymptote of the 
creep-compliance rate as 

,

,

( ) v dev
CSH

v dev
dev CSH
CSH t

J
J

tτ τ τ−
=

−
 (51) 

Hence, the long-term creep-compliance rate is solely 
controlled by ,v dev

CSHJ , while the short-term creep-com-
pliance rate is controlled by both parameters, with 

,

( ) 0 ,

v dev
dev CSH
CSH t v dev

CSH

J
J τ τ− = =  (52) 

Accordingly, ,v dev
CSHJ  may be adapted in order to fit the 

long-term response of macroscopic test data, while ,v dev
CSHτ  

is adjusted to match the creep-compliance rate directly 
after application of the load. Experimental results given 
in Hummel et al. (1962) and Athrushi (2003) are em-
ployed to identify ,v dev

CSHJ  and ,v dev
CSHτ . Whereas the best 

agreement between multiscale model and experimental 
data reported in Hummel et al. (1962) is obtained for 

,v dev
CSHJ = 0.175 GPa-1 and ,v dev

CSHτ = 3 h, ,v dev
CSHJ = 0.105 GPa-1 

and ,v dev
CSHτ  = 3/4 h give the best agreement when using 

experimental data from Athrushi (2003) [see Pichler 
(2007)]. 

 
5.2 Discussion 
The variation of ,v dev

CSHJ  highlighted in the previous sec-
tion may be explained by the different environmental 
conditions present at the creep tests. Whereas both test 
series were conducted under isothermal conditions 
(T=20℃), the specimens tested in Hummel et al. (1962) 
were subjected to a relative humidity h  of 100% for the 
age <7d and h = 65% for an age >7 d. The tests reported 
in Athrushi (2003), on the other hand, are characterized 
by h =50%. Hence, the larger the humidity h , the larger 

,v dev
CSHJ  and, consequently, the larger the macroscopi-

cally-observed long-term compliance rate. The variation 
in the identified values for ,v dev

CSHτ  suggests a dependence 
of ,v dev

CSHτ  on the degree of hydration. According to Ruetz 
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Fig. 8 Comparison between (a) uniaxial non-aging 
creep-compliance rate [see Equation (47)] and (b) uni-
axial aging creep-compliance rate [see Equation (44)]
( ,v dev

CSHJ =0.175 GPa−1 and ,v dev
CSHτ =1 h). 
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Fig. 9 Illustration of time-dependent part of dev

CSHJ (t -
τ) (see Equation (34)) for different time instants of
loading τ (given by τ/ ,v dev

CSHτ ). 
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(1966); Wittmann (1982); Ulm (1998), the short-term 
creep behavior is associated with stress-induced micro-
diffusion of water in the capillary pores. Hereby, the 
underlying diffusion process may depend on the capillary 
depression cp  and the permeability of the solid skeleton, 
both of them depending on the hydration extent. Based 
on the determination of capillary depression in the water 
phase ( )cp ξ  (Pichler et al. 2007), a dependence of 

,v dev
CSHτ  on the hydration extent is proposed as 

( ) ( )
( )

, ,
,

exp

cv dev v dev
CSH CSH

c

p
p h

ξ
τ ξ τ ∞=  (53) 

with ( )c expp h  as the capillary depression related to the 
relative humidity exph  of the medium surrounding the 
sample during the experiment via Kelvin’s equation*9. 
The best agreement between the creep compliance pre-
dicted by the multiscale model and experimental data 
(Hummel et al. 1962; Athrushi 2003) was found when 
setting ,

,
v dev
CSHτ ∞ =4 d in Eq. (53), with exph = 0.65 for the 

experiments given in Hummel et al. (1962) and exph =0.5 
characterizing the experimental results given in Athrushi 
(2003). 

The uniaxial creep tests given in Laplante (1993) have 
frequently been used to calibrate macroscopic creep 
formulations (see, e.g., Sercombe et al. (2000); Cervera 
et al. (1999)). These tests are characterized by exph  = 
50%, with the input parameters for the multiscale model 
being summarized in Appendix 2(b). When using parts 
of the data sets reported in Hummel et al. (1962); 
Athrushi (2003); Laplante (1993) characterized by a 
certain w/c-ratio for top-down identification of ,v dev

CSHJ , a 
dependency of ,v dev

CSHJ  on exph  and the w/c-ratio is ob-
served (see Figs. 10 and 11), with higher values of ,v dev

CSHJ  
for increasing exph and decreasing w/c-ratio. Conse-
quently, CSH formed at a lower w/c-ratio has a greater 
creep compliance, which may be explained by more 
pronounced “intrinsic” microcracking / damage in CSH 
formed at lower w/c-ratios, yielding higher compliance 
under sustained loading*10 (see Fig. 12). Nanoindenta-
tion tests on well hydrated cement paste samples (Pichler 
and Lackner 2007) reveal a logarithmic-type creep be-

havior with a mean value for ,v devJ  of approximately 
0.04 GPa-1 for w/c = 0.4 and exph = 50%. This value is 
lower than the respective value obtained from top-down 
identification of ,v dev

CSHJ  as a function of w/c and exph , 

*9 Kelvin’s equation expresses the liquid-vapor equilibrium 
under atmospheric conditions: 

lnH
c

H

RT
p h

M
ρ=−  (54)

where Hρ =998 kg/m3 is the density of water,R=8.3144 J/(mol K)
is the universal gas constant, T is the absolute temperature, 
MH=0.018 kg/mol is the molar mass of water, and h is the rela-
tive humidity. 
*10 Though not directly related, the study in Neubauer and 
Jennings (2000) contains a microstructural investigation of 
shrinking cement paste during drying. Hereby, large local de-
formation is associated with the collapse of the colloidal net-
work of CSH. The observed damage (fracture) is more pro-
nounced in stiffer samples, i.e., in samples with lower w/c 
ratio. 
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Fig. 10 Top-down identification of ,v dev

CSHJ  and ,v dev
CSHτ from 

experimental data given in Hummel et al. (1962) (see 
Appendix 2(c)) and comparison with B3 model (Bažant 
and Baweja 1997) ( ,v dev

CSHJ (w/c=0.38) = 0.315 GPa−1,
,v dev

CSHJ  (w/c=0.45) = 0.200 GPa−1, ,v dev
CSHJ (w/c=0.55)= 

0.175GPa−1, ,v dev
CSHJ (w/c=0.65) = 0.130 GPa−1, ,

,
v dev
CSHτ ∞ =4 d)
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giving approximately 0.09 GPa-1 (see Fig. 12), which is 
explained by the nanoindentation penetration depth of 
approximately 250 nm and the corresponding contact 
area of (1.4 μm)2 π /4 = 1.5 μm2, lying within Scales I 
and II (see Fig. 1). 

Appendix A summarizes the algorithmic treatment of 
the logarithmic-type creep model for early-age ce-
ment-based materials in nonlinear FE analyses employed 
in Section 6 for the hybrid analysis of shotcrete tunnel 
linings. 

 
6. Application to tunnel lining analysis 

Themultiscale model presented in the previous sections 
is employed in the context of hybrid analyses of shot-
crete tunnel linings used as primary support during tun-
neling according to the New Austrian Tunneling Method 
(NATM) (Lackner et al. 2006; Lackner and Mang 2003). 
This analysis scheme combines in-situ displacement 
measurements in measurement points (MPs), which are 
fixed to the tunnel lining and arranged in so-called 
measurement cross-sections (MCSs), with a thermo-
chemomechanical material model for shotcrete. Within 
this macroscopic material model, stiffness growth, 
autogenous shrinkage, and creep are specified by means 
of intrinsic material functions, giving material parame-
ters as a function of the degree of hydration ξ , which are 
provided by the proposed multiscale model. 

In the present application, one MCS of the Lainzer 
tunnel near Vienna, which was constructed as part of the 
high-capacity railway from Vienna to Salzburg, is in-
vestigated (MCS at km 8.340 of track 9). The geometric 
dimensions of this part of the Lainzer tunnel are given in 
Fig. 13. The necessary input parameters for the multis-
cale model are summarized in Appendix 2(a), giving 
access to the intrinsic material functions for Young’s 
modulus ( )E ξ , Poisson’s ratio ν ( )ξ , creep parameters 

, ( )v devJ ξ , , ( )v volJ ξ , , ( )v devτ ξ , and , ( )v volτ ξ , and auto-
genous-shrinkage strain ( )sε ξ  [see thick solid lines in 
Figs. 14(a) to (g)]. For determination of creep parame-
ters, ,

,
v dev
CSHτ ∞  was set to 4 d, whereas ,v dev

CSHJ  was set to 
0.075 GPa-1. The intrinsic material function for the 
strength growth, on the other hand, is obtained from 
macroscopic experiments (Lackner and Mang 2003) [see 
Fig. 14(h)]. Shotcrete employed at this part of the 
Lainzer tunnel is characterized by a w/c-ratio of 0.48. In 
order to assess the influence of the w/c-ratio on the 
structural performance, additional hybrid analyses with 
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Fig. 11 Top-down identification of ,v dev

CSHJ  and ,v dev
CSHτ from 

experimental data given in (a) Athrushi (2003) (“BASE5”
[ ,v dev

CSHJ =0.120 GPa−1] and “Maridal” [ ,v dev
CSHJ =0.105 GPa−1], 

see Appendix 2(c)), and (b) Laplante (1993) (“BO” [ ,v dev
CSHJ

=0.060 GPa−1] and “BTHP” [ ,v dev
CSHJ =0.100 GPa−1], see 

Appendix 2(b)), [ ,
,

v dev
CSHτ ∞ =4 d], comparison with B3 model

(Bažant and Baweja 1997)  
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Fig. 12 Top-down identification of ,v dev

CSHJ being a function
of w/c and hexp. 
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intrinsic material functions determined for w/c=0.40 and 
w/c=0.60, respectively, were performed. The respective 
intrinsic material functions are given in Fig. 14. 

Figure 15 shows the construction history for track 9 of 
the Lainzer tunnel. The reference time t = 0 is defined as 
the time instant characterizing the begin of construction 
work at the considered MCS, i.e., the excavation of the 
top heading I, which took place on January 23, 2001. 370 
hours after the erection of top heading I, the excavation 
was interrupted for almost 69 days. 

 
6.1 Thermochemical analysis 
The hydration-kinetic model outlined in (Bernard et al. 
2003; Pichler 2007) is used to determine the history of 
the hydration extents ( , )x t rξ and the temperature 

( , )T t r  in the lining, where τ represents the radial coor-
dinate. Hereby, the different chemical reactions and their 
heat release are considered in the field equation of the 
underlying thermal problem, reading 

div xx
x

cT l qξρ ξ− =−∑  (55) 

where ( cρ )[kJ/(K m3)] denotes the volume heat capacity, 
and 

x
lξ  [kJ/m3] represents the heat release of the hy-

dration reaction related to the x-th clinker phase in or-
dinary Portland cement. q  [kJ/(m2 h)] is the heat-flow 
vector. It is related to the temperature via Fourier’s law of 
heat conduction: 

 grad k Tq=−  (56) 

where k  [kJ/(m h)] denotes the thermal conductivity. At 
the inner surface of the lining, a radiation-type boundary 
condition is considered, with 

( )T Tq n α ∞⋅ = −  (57) 

The employed material parameters used in the thermo-
chemical analysis are summarized in Table 1. The output 
of the thermochemical analysis, i.e., the fields 
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Fig. 13 Lainzer tunnel: standard cross section (M: center 
point; R: radius). 
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Fig. 14 Intrinsic material functions employed in hybrid
analyses: (a) Young’s modulus, (b) Poisson’s ratio, (c) to 
(f) creep parameters obtained from multiscale model 
presented in this paper; (g) intrinsic material function for 
autogenous-shrinkage strains obtained from multiscale 
model reported in (Pichler et al. 2007; Pichler 2007), and 
(h) uniaxial strength obtained from macroscopic experi-
ments.  
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( , )t rξ and ( , )T t r , serve as input for the subsequent 
mechanical analysis of the considered MCS. The evolu-
tion of the temperature obtained at the center of the 
shotcrete lining shows a steep increase up to 65℃ within 
the first 12 hours, which agrees well with the temperature 
measurements performed at the construction site [see Fig. 
16(b)]. Thereafter, the temperature approaches the sta-
tionary situation, which is reached within the first week 
after application of the lining. In contrast to previous 
publications dealing with thermochemical analyses of 
shotcrete linings (Pichler et al. 2003; Lackner and Mang 
2002; Pichler and Lackner 2006), the w/c-ratio, which 
enters the hydration model affects the temperature in-
crease in the lining. The higher the w/c-ratio, the more 
water is available for the hydration process, which results 
in an increased hydration rate (Bernard et al. 2003) and, 
thus, in a higher temperature rise in the lining. 

 
6.2 Mechanical analysis 
The temperature field and the fields of the reaction ex-
tents serve as input for the subsequent mechanical 
analysis. Hereby, the strain within each point of the lin-
ing is accessible via interpolation of displacement histo-
ries available at the aforementioned MPs. This strain 
field together with the actual temperature and reaction 
extents are considered in a multi-surface chemoplasticity 
model, accounting for stiffness growth, autoge-
nous-shrinkage deformations, strength growth, micro-
cracking, and creep (for details, see Lackner et al. 
(2002a); Lackner and Mang (2003)). For the interpreta-
tion of the numerical results obtained from the hybrid 
analysis of the considered MCS, the level of loading L  
is introduced. It amounts to 0% for the unloaded material 
and to 100% when the stress state reaches the failure 
surface defined by the (actual) compressive strength. For 
the underlying Drucker-Prager failure criterion, the level 
of loading at a point in the shotcrete lining is determined 
from Lackner and Mang (2003) 

( ) ( )
( )

2 1, ,

/
z DP z

c DP

J I

f
ϕ ϕσ σ α σ σ

ξ β

+
L =  (58) 

where ϕσ  and zσ  are the stress component in the 
circumferential and longitudinal direction of the tunnel. In 
Eq. (58), 1I  ( 2J ) represents the first (second) invariant of 
the stress tensor (deviator). αDP  and βDP  are constant 
parameters of the Drucker-Prager criterion, with αDP = 0.699 
and βDP = 1.97 (Lackner and Mang 2003). For presentation 
of the obtained results, the level of loading is averaged over 
the shell thickness h , with L  = h dr∫ L . Figure 17 
shows results from mechanical analyses with w/c = 0.48, 
when successively taking more and more dissipative phe-
nomena into account. While Fig. 17(b) shows the result 
from an elastoplastic analysis disregarding autogenous 
shrinkage and creep, Fig. 17(c) is characterized by taking 
into account autogenous shrinkage. Figure 17(b) and (c) 
show only marginal differences. Hence autogenous de-
formations may be disregarded in the present analysis, 
characterized by w/c = 0.48*11. The increase of the level 
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Fig. 15 Lainzer tunnel: construction history of tunnel
containing track 9. 
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Fig. 16 Temperature history at (a) the inner surface and 
(b) the center of the lining. 
 

Table 1 Material parameters and initial temperatures 
used in the thermochemical analysis. 

  shotcrete soil 
Density ρ  [kg/m3] 2400 1450
Heat capacity c  [kJ/(kg K)] 0.88 0.88
Thermal  
conductivity k [kJ/(m h K)] 3.6 4.6 

Radiation  
coefficient αr 

[kJ/(m2 h K)] 40 - 

Initial temperature T0 [℃] 16 10 
Temperature in tunnel 
opening T ∞ [℃] 18 - 
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of loading within the first 12 hours [see ① in Fig. 17(b) 
and (c)]is caused by thermal dilation associated with the 
temperature rise in the course of the hydration process 
[compare to Fig. 17(a), where thermal dilation was not 
taken into account, see ② ], and the pronounced stiff-
ness increase at early ages (see Fig. 14). This is observed 
for all newly-installed parts of the lining, i.e., top heading 
I and top heading II on both the left and the right side (see 
③). Although the lining cools down after approximately 
12 h (see Fig. 16), L  increases in the central part of top 
heading I (see ④). This is explained by the continuous 
excavation of top heading I and II, resulting in an in-
creased loading of the lining by the inward-moving soil. 
When creep is taken into account [see Fig. 18(d)], the 
lining “dodges” excessive loading, particularly at early 
stages of hydration (see ⑤). Based on the measurements, 
and also reflected by the distribution of the level of 
loading, the MCS started to move towards the right 
bench, leading to a continuous, high loading of the right 
part of the lining (see ⑥). Consideration of creep de-
formations leads to a reduction of L  of approximately 
36 % (compared to the elastoplastic analyses) in this part 
of the lining. Fig. 18 shows the evolution of L  over the 

first 4.5 months. The surface settlements associated with 
the mentioned movement were the reason to stop the 
tunnel advance 370 hours after installation of the con-
sidered cross-section. During this construction break, the 
footings of the existing top heading II were improved by 
installing micropiles of 80 mm diameter. 

In addition the aforementioned analyses, a parameter 
study was conducted in order to assess the influence of 
the w/c-ratio on the loading of the tunnel lining. The 
previous viscoelastic-plastic analysis characterized by 
consideration of autogenous shrinkage and w/c = 0.48 is 
compared to analyses for shotcrete with w/c = 0.40 and 
0.60, respectively. Hereby, the employed intrinsic mate-
rial functions, determined by the multiscale model, are 
given in Fig. 14(a) to (g). The intrinsic material function 
for strength growth, on the other hand, given for shot-
crete with w/c = 0.48 in Fig. 14(h), remained unchanged 
in the present analyses. Figure 19 compares the evolu-
tion of L  for the first 3 days. Whereas the increased 
stiffness for w/c = 0.40 leads to higher loading of the 
shotcrete lining, with L =71 % at top heading II on the 
right side (t=3d), (i) the higher values for the elastic 
compliance and (ii) the significantly increased creep 
compliance for shotcrete characterized by w/c = 0.60 
leads to a significant reduction of the level of loading to 
L =9 %. 

It is noteworthy, that for all analyses the same (meas-
ured) displacement histories at the considered MCS were 

*11 The smaller the w/c ratios, the larger are autogenous-
shrinkage strains and, hence, the influence of the latter on 
structural performance, at early stages of hydration (Pichler et 
al. 2007). 

 

 
Fig. 17 History of distribution of L  in shotcrete lining (w/c=0.48) at considered MCS (top view of unrolled lining) for 3 days 
after application of top heading I: (a) elastoplastic analysis disregarding thermal dilation, (b) elastoplastic analysis, (c) elas-
toplastic analysis with autogenous shrinkage taken into account, and (d) viscoelastic-plastic analysis with autogenous 
shrinkage taken into account. 
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used. Obviously, a different mix design of the employed 
shotcrete would have resulted in different displacements. 
However, because of the hybrid nature of the analysis, 
with displacement measurements from the construction 
site serving as input, the effect of the shotcrete mix on the 
displacement history cannot be considered. 
 

7. Concluding remarks and future work 

In this paper a multiscale model for early-age viscoelas-
tic properties of cement-based materials was proposed 
and incorporated in the macroscopic analysis of shotcrete 
tunnel linings. Hereby, the viscous properties of the 
creep-active constituent at finer scales, i.e., cal-
cium-silicate-hydrates are transferred to the macroscale, 

 
Fig. 18 History of distribution of L  in shotcrete lining (w/c=0.48) at considered MCS (top view of unrolled lining):  
(a) 4.5 months and (b) 3 days after application of top heading I. 
 

 
 

Fig. 19 History of distribution of L  in shotcrete lining at considered MCS (top view of unrolled lining) for 3 days after 
application of top heading I (parameter study for three different w/c-values). 
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considering the continuously changing finer-scale com-
position, as well as the compliance-raising effect of pores, 
and the stiffening effect of inclusion, respectively, at 
various observation scales. 

The presented multiscale model may be improved by 
considering the influence of the curing temperature (other 
than 0T =20 ℃ ) on the creep compliance parameter 

,v dev
CSHJ  , accounting for the thermal activation of the creep 

process through an Arrhenius term, i.e., ,v dev
CSHJ  

( 0T )exp[ aE / R (1/ T －1/ 0T )], with aE  denoting the 
activation energy of the long-term creep process (in Bažant 
(1995), the latter was identified as aE / R =2700 K). 
Moreover, since magnitude and duration of the creep 
process was found to depend on the relative humidity h , 
the latter should also enter the evolution law for the degree 
of hydration ξ , particularly relevant for larger values of 
ξ . Both modes of improvement are topics of ongoing 
research. 
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Appendix 1. Algorithmic treatment 
For the integration of the convolution integrals deter-
mining logarithmic creep in the context of a nonlinear 
FE-analysis, a discretized form of the state equation 
and the evolution equation for creep (and plasticity) is 
needed. Using a backward Euler scheme*12, the discrete 
form of the evolution equation for the creep-strain 
tensor vε  [see Eq.(43)] at the end of the (n+1)-st time 
increment, with 1n nt t t +≤ ≤ , follows from 
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Hence, the increment of the creep-strain tensor is given 
as 
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Accounting for the stress-free formation of hydration 
products (Bažant 1979), a differential form of the state 
equation is employed (Lackner et al. 2002a). Writing 

the state equation in discretized form one gets 

( )1 1 1 1 1: p v
n n n n n+ + + + +⎡ ⎤Δ = Δ −Δ −Δ⎣ ⎦ξσ ε ε ε  (A6) 

Reformulating Eq. (A6) in order to obtain the stan-
dard plasticity format gives*14 
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and, finally, 
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where I  represents the fourth-order unity tensor. Thus, 
the standard format of elastoplasticity is obtained, 
where only 1

p
n+Δε  depends on the unknown stress 

tensor. For the solution of Eq. (A9), return map algo-
rithms as outlined in Simo and Hughes (1998) are used. 
 

*12 An implicit integration scheme is used in this work, i.e., 
quantities changing in time are assumed as constant in the 
time interval [tn,tn+1], taking their value at the end of the time 
interval. 

*13 In Eq. (A4), the stress increment kΔσ  is assumed to be 
applied at the end of the respective time increment. If the 
stress increment is applied at the beginning of the respective 
time increment, Eq. (A4) reads 
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with α =1. In case the stress increment is applied in the a 
middle of the time increment, α =1/2. 
*14 In Eq. (A6) both the plastic strain increment 1

p
n+Δε  and 

the viscous strain increment 1
v
n+Δε  depend on 1n+Δσ . On 

the right-hand-side of the respective law for classical elasto-
plasticity only 1

p
n+Δε  depends on 1n+Δσ . In order to obtain 

the same mode of dependence as in classical elastoplasticity, 
Eq. (A6) is reformulated. 
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Appendix 2. Input-parameter sets for multiscale 
model 
This appendix summarizes input-parameter sets, char-
acterizing various cement-based materials used to ver-
ify the multiscale model. The input parameters include 
the basic mix properties (water/cement-ratio w/c and 
cement content c), the elastic properties of the aggre-
gate, as well as parameters characterizing the employed 
cement (Blaine fineness ø, medium initial radius of the 
clinker grains R, and the mass fractions of the clinker 
phases). Mineralogical analyses of OPC clinker give 
access to the mass fractions of lime CaO, silica SiO2, 
alumina Al2O3, ferrite Fe2O3, sulphate SO3, ... The mass 
fractions of the clinker phases are determined by the 
so-called Bogue calculation (Taylor 1997). For this 
calculation, the lime content CaOm  is reduced by the  

content bound in gypsum CaSO4･H2O (written in ab-
breviated form 2CSH ), with 1 mol SO3 combining 
with 1 mol CaO to form gypsum or, equivalently, 80 g 
SO3 binding 56 g CaO. Hence, the mass fraction of 
sulphate 

3SOm  combines with 56/80
3SOm  of CaO. 

Other parameters, when required for verification of the 
model, e.g., the compressive strength and the aggre-
gate/cement ratio a/c for comparison of the modeled 
creep compliance with the B3 model (Bažant and 
Baweja 1997) are also listed in the tables. 

Appendix 2(a) Input-parameter set for multiscale model 
for the shotcrete employed at the Lainzer tunnel. 

Basic mix properties:    
Water/cement-ratio w/c  [–] 0.48 
Cement content c  [kg/m3] 380 
   
Elastic properties of aggregate:    
Young’s modulus of aggregate Ea  [GPa] 50 
Poisson’s ratio of aggregate νa  [–] 0.3 
   
Cement characteristics:    
Blaine fineness ø  [cm2/g] 4895
Medium initial radius of clinker 
grains R  

[μm] 5 

Mass fractions of clinker phases    

3C Sm  [%] 48.7 

2C Sm  [%] 22.8 

3C Am  [%] 11.4 

4C AFm  [%] 9.4 

2CSHm  [%] 7.7 
Additional parameters for model 
verification: 

  

Curing temperature T (isothermal 
conditions)  

[℃] 11 

Experiments conducted on speci-
mens of age ...  

[h]  
[d] 

2;4;8;12
1;2;7;28

Aggregate/cement-ratio a/c[1] [–]  5.3 
Compressive strength fc∞ [1] [MPa] 40.0 

[1] parameters for comparison with B3 model (Bažant 
and Baweja 1997) 
 

Appendix 2(b) Input-parameter set for multiscale model 
(upscaling of creep properties) for concrete investigated 
in Laplante (1993). 

Creep experiments published in ...  
Laplante 
(1993) 

Type of concrete (notation in  
reference)  

 BO BTHP

Basic mix properties:     
Water/cement-ratio w/c  [–] 0.50 0.33
Cement content c  [kg/m3] 342 398
    
Elastic properties of aggregate:     
Young’s modulus of aggregate Ea  [GPa] 65 65
Poisson’s ratio of aggregate νa  [–] 0.23 0.23
    
Cement characteristics:     
Blaine fineness ø  [cm2/g] 3466 3466
Medium initial radius of clinker 
grains R  

[μm] (8) (8)

Mass fractions of clinker phases     

3C Sm  [%] 60.7 60.7

2C Sm  [%] 18.7 18.7

3C Am  [%] 2.8 2.8

4C AFm  [%] 12.2 12.2

2CSHm  [%] 2.5 2.5
others+inert  [%] 3.1 3.1
Additional parameters for model 
verification:  

   

Curing temperature T (isothermal 
conditions)  

[℃] 20 20

Loading times t0  [h] 
20;
27

20;24;
28

 [d] 
3;7;
28

3;7;
28

Aggregate/cement-ratio a/c[1] [–] 5.46 4.84
Compressive strength fc28 [1]  [MPa] 40 80

[1] parameters for comparison with B3 model (Bažant  
and Baweja 1997) 
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Appendix 2(c) Input-parameter set for multiscale model (upscaling of creep properties) for concrete investigated in 
Hummel et al. (1962). 

Creep experiments published in ...   Hummel et al. (1962) Athrushi (2003)
Type of cement (notation in reference)   PZ 225 PZ 225 PZ 225 PZ 225 PZ 425 BASE5 Maridal
Basic mix properties:          
Water/cement-ratio w/c  [–] 0.38 0.45 0.55 0.65 0.55 0.42 0.44 
Cement content c  [kg/m3] 350 345 334 328 334 368.1 350 
         
Elastic properties of aggregate:          
Young’s modulus of aggregate[1] Ea  [GPa] (40) (40) (40) (40) (40) (40)[4] (50)[4]

Poisson’s ratio of aggregate νa  [–] (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) 
         
Cement characteristics:          
Blaine fineness ø  [cm2/g] 3900 3900 3900 3900 4575 3600[5] 3600[5]

Medium initial radius of clinker grains R  [μm] (7) (7) (7) (7) (5) (8) (8) 
Mass fractions of clinker phases[2]          

3C Sm  [%] 49.1 49.1 49.1 49.1 53.6 (55) (55) 

2C Sm  [%] 23.0 23.0 23.0 23.0 13.2 (23) (23) 

3C Am  [%] 8.0 8.0 8.0 8.0 10.7 6,0 6.0 

4C AFm  [%] 7.6 7.6 7.6 7.6 9.6 (6.2) (6.2) 

2CSHm  [%] 3.7 3.7 3.7 3.7 4.7 4.8 4.8 
Others+inert  [%] 8.6 8.6 8.6 8.6 8.2 (5) (5) 
Additional parameters for model verification:         
Curing temperature (isothermal conditions)  [℃] 20 20 20 20 20 20 20 

Loading times t0  [d] 28 28 3;28;90 28 3;28;90 
1;2;3;
4;6;8 

2;3;6 

Aggregate/cement-ratio a/c[3]  [–] 5.4 5.4 5.4 5.4 5.4 5.12 5.24 
Compressive strength fc28

[3]  [MPa] 41.4 34.9 28.6 20.3 43.5 81.0 42.2 
[1] Rhine gravel,  
[2] 4% ignition loss was taken into account  
[3] parameters for comparison with B3 model (Bažant and Baweja 1997) (cylinder 15/30 cm)  
[4] chosen to match macroscopic stiffness evolution (E28)  
[5] Norcem Anleggsement CEM I 52.5 N-LA, data taken from www.norcem.org 

  
 


